import data.nat open algebra constant f {A : Type} : A ā†’ A ā†’ A theorem test1 {A : Type} [s : comm_ring A] (a b c : A) : f (a + 0) (f (a + 0) (a + 0)) = f a (f (0 + a) a) := begin rewrite [add_zero at {1, 3}, -- rewrite 1st and 3rd occurrences {0 + _}add.comm] -- apply commutativity to (0 + _) end check @mul_zero axiom Ax {A : Type} [sā‚ : has_mul A] [sā‚‚ : has_zero A] (a : A) : f (a * 0) (a * 0) = 0 theorem test2 {A : Type} [s : comm_ring A] (a b c : A) : f 0 0 = 0 := begin rewrite [ -(mul_zero a) at {1, 2}, -- - means apply symmetry, rewrite 0 ==> a * 0 at 1st and 2nd occurrences Ax] -- use Ax as rewrite rule end theorem test3 {A : Type} [s : comm_ring A] (a b c : A) : a * 0 + 0 * b + c * 0 + 0 * a = 0 := begin rewrite [+mul_zero, +zero_mul, +add_zero] -- in rewrite rules, + is notation for one or more end reveal test3 print definition test3 theorem test4 {A : Type} [s : comm_ring A] (a b c : A) : a * 0 + 0 * b + c * 0 + 0 * a = 0 := begin rewrite [*mul_zero, *zero_mul, *add_zero, *zero_add] -- in rewrite rules, * is notation for zero or more end theorem test5 {A : Type} [s : comm_ring A] (a b c : A) : a * 0 + 0 * b + c * 0 + 0 * a = 0 := begin rewrite [ 2 mul_zero, -- apply mul_zero exactly twice 2 zero_mul, -- apply zero_mul exactly twice 5>add_zero] -- apply add_zero at most 5 times end