/- Copyright (c) 2015 Haitao Zhang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Haitao Zhang, Leonardo de Moura Finite ordinal types. -/ import data.list.basic data.finset.basic data.fintype.card algebra.group open eq.ops nat function list finset fintype structure fin (n : nat) := (val : nat) (is_lt : val < n) definition less_than [reducible] := fin namespace fin attribute fin.val [coercion] section def_equal variable {n : nat} lemma eq_of_veq : ∀ {i j : fin n}, (val i) = j → i = j | (mk iv ilt) (mk jv jlt) := assume (veq : iv = jv), begin congruence, assumption end lemma veq_of_eq : ∀ {i j : fin n}, i = j → (val i) = j | (mk iv ilt) (mk jv jlt) := assume Peq, show iv = jv, from fin.no_confusion Peq (λ Pe Pqe, Pe) lemma eq_iff_veq {i j : fin n} : (val i) = j ↔ i = j := iff.intro eq_of_veq veq_of_eq definition val_inj := @eq_of_veq n end def_equal section open decidable protected definition has_decidable_eq [instance] (n : nat) : ∀ (i j : fin n), decidable (i = j) | (mk ival ilt) (mk jval jlt) := decidable_of_decidable_of_iff (nat.has_decidable_eq ival jval) eq_iff_veq end lemma dinj_lt (n : nat) : dinj (λ i, i < n) fin.mk := take a1 a2 Pa1 Pa2 Pmkeq, fin.no_confusion Pmkeq (λ Pe Pqe, Pe) lemma val_mk (n i : nat) (Plt : i < n) : fin.val (fin.mk i Plt) = i := rfl definition upto [reducible] (n : nat) : list (fin n) := dmap (λ i, i < n) fin.mk (list.upto n) lemma nodup_upto (n : nat) : nodup (upto n) := dmap_nodup_of_dinj (dinj_lt n) (list.nodup_upto n) lemma mem_upto (n : nat) : ∀ (i : fin n), i ∈ upto n := take i, fin.destruct i (take ival Piltn, assert ival ∈ list.upto n, from mem_upto_of_lt Piltn, mem_dmap Piltn this) lemma upto_zero : upto 0 = [] := by rewrite [↑upto, list.upto_nil, dmap_nil] lemma map_val_upto (n : nat) : map fin.val (upto n) = list.upto n := map_dmap_of_inv_of_pos (val_mk n) (@lt_of_mem_upto n) lemma length_upto (n : nat) : length (upto n) = n := calc length (upto n) = length (list.upto n) : (map_val_upto n ▸ length_map fin.val (upto n))⁻¹ ... = n : list.length_upto n definition is_fintype [instance] (n : nat) : fintype (fin n) := fintype.mk (upto n) (nodup_upto n) (mem_upto n) section pigeonhole open fintype lemma card_fin (n : nat) : card (fin n) = n := length_upto n theorem pigeonhole {n m : nat} (Pmltn : m < n) : ¬∃ f : fin n → fin m, injective f := assume Pex, absurd Pmltn (not_lt_of_ge (calc n = card (fin n) : card_fin ... ≤ card (fin m) : card_le_of_inj (fin n) (fin m) Pex ... = m : card_fin)) end pigeonhole definition zero (n : nat) : fin (succ n) := mk 0 !zero_lt_succ definition mk_mod [reducible] (n i : nat) : fin (succ n) := mk (i mod (succ n)) (mod_lt _ !zero_lt_succ) variable {n : nat} theorem val_lt : ∀ i : fin n, val i < n | (mk v h) := h lemma max_lt (i j : fin n) : max i j < n := max_lt (is_lt i) (is_lt j) definition lift : fin n → Π m, fin (n + m) | (mk v h) m := mk v (lt_add_of_lt_right h m) definition lift_succ (i : fin n) : fin (nat.succ n) := lift i 1 definition maxi [reducible] : fin (succ n) := mk n !lt_succ_self theorem val_lift : ∀ (i : fin n) (m : nat), val i = val (lift i m) | (mk v h) m := rfl lemma mk_succ_ne_zero {i : nat} : ∀ {P}, mk (succ i) P ≠ zero n := assume P Pe, absurd (veq_of_eq Pe) !succ_ne_zero lemma mk_mod_eq {i : fin (succ n)} : i = mk_mod n i := eq_of_veq begin rewrite [↑mk_mod, mod_eq_of_lt !is_lt] end lemma mk_mod_of_lt {i : nat} (Plt : i < succ n) : mk_mod n i = mk i Plt := begin esimp [mk_mod], congruence, exact mod_eq_of_lt Plt end section lift_lower lemma lift_zero : lift_succ (zero n) = zero (succ n) := rfl lemma ne_max_of_lt_max {i : fin (succ n)} : i < n → i ≠ maxi := by intro hlt he; substvars; exact absurd hlt (lt.irrefl n) lemma lt_max_of_ne_max {i : fin (succ n)} : i ≠ maxi → i < n := assume hne : i ≠ maxi, assert vne : val i ≠ n, from assume he, have val (@maxi n) = n, from rfl, have val i = val (@maxi n), from he ⬝ this⁻¹, absurd (eq_of_veq this) hne, have val i < nat.succ n, from val_lt i, lt_of_le_of_ne (le_of_lt_succ this) vne lemma lift_succ_ne_max {i : fin n} : lift_succ i ≠ maxi := begin cases i with v hlt, esimp [lift_succ, lift, max], intro he, injection he, substvars, exact absurd hlt (lt.irrefl v) end lemma lift_succ_inj : injective (@lift_succ n) := take i j, destruct i (destruct j (take iv ilt jv jlt Pmkeq, begin congruence, apply fin.no_confusion Pmkeq, intros, assumption end)) lemma lt_of_inj_of_max (f : fin (succ n) → fin (succ n)) : injective f → (f maxi = maxi) → ∀ i, i < n → f i < n := assume Pinj Peq, take i, assume Pilt, assert P1 : f i = f maxi → i = maxi, from assume Peq, Pinj i maxi Peq, have f i ≠ maxi, from begin rewrite -Peq, intro P2, apply absurd (P1 P2) (ne_max_of_lt_max Pilt) end, lt_max_of_ne_max this definition lift_fun : (fin n → fin n) → (fin (succ n) → fin (succ n)) := λ f i, dite (i = maxi) (λ Pe, maxi) (λ Pne, lift_succ (f (mk i (lt_max_of_ne_max Pne)))) definition lower_inj (f : fin (succ n) → fin (succ n)) (inj : injective f) : f maxi = maxi → fin n → fin n := assume Peq, take i, mk (f (lift_succ i)) (lt_of_inj_of_max f inj Peq (lift_succ i) (lt_max_of_ne_max lift_succ_ne_max)) lemma lift_fun_max {f : fin n → fin n} : lift_fun f maxi = maxi := begin rewrite [↑lift_fun, dif_pos rfl] end lemma lift_fun_of_ne_max {f : fin n → fin n} {i} (Pne : i ≠ maxi) : lift_fun f i = lift_succ (f (mk i (lt_max_of_ne_max Pne))) := begin rewrite [↑lift_fun, dif_neg Pne] end lemma lift_fun_eq {f : fin n → fin n} {i : fin n} : lift_fun f (lift_succ i) = lift_succ (f i) := begin rewrite [lift_fun_of_ne_max lift_succ_ne_max], congruence, congruence, rewrite [-eq_iff_veq], esimp, rewrite [↑lift_succ, -val_lift] end lemma lift_fun_of_inj {f : fin n → fin n} : injective f → injective (lift_fun f) := assume Pinj, take i j, assert Pdi : decidable (i = maxi), from _, assert Pdj : decidable (j = maxi), from _, begin cases Pdi with Pimax Pinmax, cases Pdj with Pjmax Pjnmax, substvars, intros, exact rfl, substvars, rewrite [lift_fun_max, lift_fun_of_ne_max Pjnmax], intro Plmax, apply absurd Plmax⁻¹ lift_succ_ne_max, cases Pdj with Pjmax Pjnmax, substvars, rewrite [lift_fun_max, lift_fun_of_ne_max Pinmax], intro Plmax, apply absurd Plmax lift_succ_ne_max, rewrite [lift_fun_of_ne_max Pinmax, lift_fun_of_ne_max Pjnmax], intro Peq, rewrite [-eq_iff_veq], exact veq_of_eq (Pinj (lift_succ_inj Peq)) end lemma lift_fun_inj : injective (@lift_fun n) := take f₁ f₂ Peq, funext (λ i, assert lift_fun f₁ (lift_succ i) = lift_fun f₂ (lift_succ i), from congr_fun Peq _, begin revert this, rewrite [*lift_fun_eq], apply lift_succ_inj end) lemma lower_inj_apply {f Pinj Pmax} (i : fin n) : val (lower_inj f Pinj Pmax i) = val (f (lift_succ i)) := by rewrite [↑lower_inj] end lift_lower section madd definition madd (i j : fin (succ n)) : fin (succ n) := mk ((i + j) mod (succ n)) (mod_lt _ !zero_lt_succ) definition minv : ∀ i : fin (succ n), fin (succ n) | (mk iv ilt) := mk ((succ n - iv) mod succ n) (mod_lt _ !zero_lt_succ) lemma val_madd : ∀ i j : fin (succ n), val (madd i j) = (i + j) mod (succ n) | (mk iv ilt) (mk jv jlt) := by esimp lemma madd_inj : ∀ {i : fin (succ n)}, injective (madd i) | (mk iv ilt) := take j₁ j₂, fin.destruct j₁ (fin.destruct j₂ (λ jv₁ jlt₁ jv₂ jlt₂, begin rewrite [↑madd, -eq_iff_veq], intro Peq, congruence, rewrite [-(mod_eq_of_lt jlt₁), -(mod_eq_of_lt jlt₂)], apply mod_eq_mod_of_add_mod_eq_add_mod_left Peq end)) lemma madd_mk_mod {i j : nat} : madd (mk_mod n i) (mk_mod n j) = mk_mod n (i+j) := eq_of_veq begin esimp [madd, mk_mod], rewrite [ mod_add_mod, add_mod_mod ] end lemma val_mod : ∀ i : fin (succ n), (val i) mod (succ n) = val i | (mk iv ilt) := by esimp; rewrite [(mod_eq_of_lt ilt)] lemma madd_comm (i j : fin (succ n)) : madd i j = madd j i := by apply eq_of_veq; rewrite [*val_madd, add.comm (val i)] lemma zero_madd (i : fin (succ n)) : madd (zero n) i = i := by apply eq_of_veq; rewrite [val_madd, ↑zero, nat.zero_add, mod_eq_of_lt (is_lt i)] lemma madd_zero (i : fin (succ n)) : madd i (zero n) = i := !madd_comm ▸ zero_madd i lemma madd_assoc (i j k : fin (succ n)) : madd (madd i j) k = madd i (madd j k) := by apply eq_of_veq; rewrite [*val_madd, mod_add_mod, add_mod_mod, add.assoc (val i)] lemma madd_left_inv : ∀ i : fin (succ n), madd (minv i) i = zero n | (mk iv ilt) := eq_of_veq (by rewrite [val_madd, ↑minv, ↑zero, mod_add_mod, sub_add_cancel (le_of_lt ilt), mod_self]) open algebra definition madd_is_comm_group [instance] : add_comm_group (fin (succ n)) := add_comm_group.mk madd madd_assoc (zero n) zero_madd madd_zero minv madd_left_inv madd_comm end madd definition pred : fin n → fin n | (mk v h) := mk (nat.pred v) (pre_lt_of_lt h) lemma val_pred : ∀ (i : fin n), val (pred i) = nat.pred (val i) | (mk v h) := rfl lemma pred_zero : pred (zero n) = zero n := rfl definition mk_pred (i : nat) (h : succ i < succ n) : fin n := mk i (lt_of_succ_lt_succ h) definition succ : fin n → fin (succ n) | (mk v h) := mk (nat.succ v) (succ_lt_succ h) lemma val_succ : ∀ (i : fin n), val (succ i) = nat.succ (val i) | (mk v h) := rfl lemma succ_max : fin.succ maxi = (@maxi (nat.succ n)) := rfl lemma lift_succ.comm : lift_succ ∘ (@succ n) = succ ∘ lift_succ := funext take i, eq_of_veq (begin rewrite [↑lift_succ, -val_lift, *val_succ, -val_lift] end) definition elim0 {C : fin 0 → Type} : Π i : fin 0, C i | (mk v h) := absurd h !not_lt_zero definition zero_succ_cases {C : fin (nat.succ n) → Type} : C (zero n) → (Π j : fin n, C (succ j)) → (Π k : fin (nat.succ n), C k) := begin intros CO CS k, induction k with [vk, pk], induction (nat.decidable_lt 0 vk) with [HT, HF], { show C (mk vk pk), from let vj := nat.pred vk in have vk = vj+1, from eq.symm (succ_pred_of_pos HT), assert vj < n, from lt_of_succ_lt_succ (eq.subst `vk = vj+1` pk), have succ (mk vj `vj < n`) = mk vk pk, from val_inj (eq.symm `vk = vj+1`), eq.rec_on this (CS (mk vj `vj < n`)) }, { show C (mk vk pk), from have vk = 0, from eq_zero_of_le_zero (le_of_not_gt HF), have zero n = mk vk pk, from val_inj (eq.symm this), eq.rec_on this CO } end theorem choice {C : fin n → Type} : (∀ i : fin n, nonempty (C i)) → nonempty (Π i : fin n, C i) := begin revert C, induction n with [n, IH], { intros C H, apply nonempty.intro, exact elim0 }, { intros C H, fapply nonempty.elim (H (zero n)), intro CO, fapply nonempty.elim (IH (λ i, C (succ i)) (λ i, H (succ i))), intro CS, apply nonempty.intro, exact zero_succ_cases CO CS } end section open list local postfix `+1`:100 := nat.succ lemma dmap_map_lift {n : nat} : ∀ l : list nat, (∀ i, i ∈ l → i < n) → dmap (λ i, i < n +1) mk l = map lift_succ (dmap (λ i, i < n) mk l) | [] := assume Plt, rfl | (i::l) := assume Plt, begin rewrite [@dmap_cons_of_pos _ _ (λ i, i < n +1) _ _ _ (lt_succ_of_lt (Plt i !mem_cons)), @dmap_cons_of_pos _ _ (λ i, i < n) _ _ _ (Plt i !mem_cons), map_cons], congruence, apply dmap_map_lift, intro j Pjinl, apply Plt, apply mem_cons_of_mem, assumption end lemma upto_succ (n : nat) : upto (n +1) = maxi :: map lift_succ (upto n) := begin rewrite [↑fin.upto, list.upto_succ, @dmap_cons_of_pos _ _ (λ i, i < n +1) _ _ _ (nat.self_lt_succ n)], congruence, apply dmap_map_lift, apply @list.lt_of_mem_upto end definition upto_step : ∀ {n : nat}, fin.upto (n +1) = (map succ (upto n))++[zero n] | 0 := rfl | (i +1) := begin rewrite [upto_succ i, map_cons, append_cons, succ_max, upto_succ, -lift_zero], congruence, rewrite [map_map, -lift_succ.comm, -map_map, -(map_singleton _ (zero i)), -map_append, -upto_step] end end end fin