-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura import logic.eq open eq.ops decidable inductive option (A : Type) : Type := none {} : option A, some : A → option A namespace option definition is_none {A : Type} (o : option A) : Prop := rec true (λ a, false) o theorem is_none_none {A : Type} : is_none (@none A) := trivial theorem not_is_none_some {A : Type} (a : A) : ¬ is_none (some a) := not_false theorem none_ne_some {A : Type} (a : A) : none ≠ some a := assume H, no_confusion H theorem some.inj {A : Type} {a₁ a₂ : A} (H : some a₁ = some a₂) : a₁ = a₂ := no_confusion H (λe, e) protected definition is_inhabited [instance] (A : Type) : inhabited (option A) := inhabited.mk none protected definition has_decidable_eq [instance] {A : Type} (H : decidable_eq A) : decidable_eq (option A) := take o₁ o₂ : option A, rec_on o₁ (rec_on o₂ (inl rfl) (take a₂, (inr (none_ne_some a₂)))) (take a₁ : A, rec_on o₂ (inr (ne.symm (none_ne_some a₁))) (take a₂ : A, decidable.rec_on (H a₁ a₂) (assume Heq : a₁ = a₂, inl (Heq ▸ rfl)) (assume Hne : a₁ ≠ a₂, inr (assume Hn : some a₁ = some a₂, absurd (some.inj Hn) Hne)))) end option