/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Jeremy Avigad Subtraction on the natural numbers, as well as min, max, and distance. -/ import .order open eq.ops namespace nat /- subtraction -/ protected theorem sub_zero [simp] (n : ℕ) : n - 0 = n := rfl theorem sub_succ [simp] (n m : ℕ) : n - succ m = pred (n - m) := rfl protected theorem zero_sub [simp] (n : ℕ) : 0 - n = 0 := nat.induction_on n (by simp) (by simp) theorem succ_sub_succ [simp] (n m : ℕ) : succ n - succ m = n - m := succ_sub_succ_eq_sub n m protected theorem sub_self [simp] (n : ℕ) : n - n = 0 := nat.induction_on n (by simp) (by simp) local attribute nat.add_succ [simp] protected theorem add_sub_add_right [simp] (n k m : ℕ) : (n + k) - (m + k) = n - m := nat.induction_on k (by simp) (by simp) protected theorem add_sub_add_left [simp] (k n m : ℕ) : (k + n) - (k + m) = n - m := nat.induction_on k (by simp) (by simp) protected theorem add_sub_cancel [simp] (n m : ℕ) : n + m - m = n := nat.induction_on m (by simp) (by simp) protected theorem add_sub_cancel_left [simp] (n m : ℕ) : n + m - n = m := nat.induction_on n (by simp) (by simp) protected theorem sub_sub [simp] (n m k : ℕ) : n - m - k = n - (m + k) := nat.induction_on k (by simp) (by simp) theorem succ_sub_sub_succ [simp] (n m k : ℕ) : succ n - m - succ k = n - m - k := by simp theorem sub_self_add [simp] (n m : ℕ) : n - (n + m) = 0 := by inst_simp protected theorem sub.right_comm (m n k : ℕ) : m - n - k = m - k - n := by simp theorem sub_one (n : ℕ) : n - 1 = pred n := rfl theorem succ_sub_one [simp] (n : ℕ) : succ n - 1 = n := rfl local attribute nat.succ_mul nat.mul_succ [simp] /- interaction with multiplication -/ theorem mul_pred_left [simp] (n m : ℕ) : pred n * m = n * m - m := nat.induction_on n (by simp) (by simp) theorem mul_pred_right [simp] (n m : ℕ) : n * pred m = n * m - n := by inst_simp protected theorem mul_sub_right_distrib [simp] (n m k : ℕ) : (n - m) * k = n * k - m * k := nat.induction_on m (by simp) (by simp) protected theorem mul_sub_left_distrib [simp] (n m k : ℕ) : n * (m - k) = n * m - n * k := by inst_simp protected theorem mul_self_sub_mul_self_eq (a b : nat) : a * a - b * b = (a + b) * (a - b) := by rewrite [nat.mul_sub_left_distrib, *right_distrib, mul.comm b a, add.comm (a*a) (a*b), nat.add_sub_add_left] local attribute succ_eq_add_one right_distrib left_distrib [simp] theorem succ_mul_succ_eq (a : nat) : succ a * succ a = a*a + a + a + 1 := by simp /- interaction with inequalities -/ theorem succ_sub {m n : ℕ} : m ≥ n → succ m - n = succ (m - n) := sub_induction n m (take k, assume H : 0 ≤ k, rfl) (take k, assume H : succ k ≤ 0, absurd H !not_succ_le_zero) (take k l, assume IH : k ≤ l → succ l - k = succ (l - k), take H : succ k ≤ succ l, calc succ (succ l) - succ k = succ l - k : succ_sub_succ ... = succ (l - k) : IH (le_of_succ_le_succ H) ... = succ (succ l - succ k) : succ_sub_succ) theorem sub_eq_zero_of_le {n m : ℕ} (H : n ≤ m) : n - m = 0 := obtain (k : ℕ) (Hk : n + k = m), from le.elim H, Hk ▸ !sub_self_add theorem add_sub_of_le {n m : ℕ} : n ≤ m → n + (m - n) = m := sub_induction n m (take k, assume H : 0 ≤ k, calc 0 + (k - 0) = k - 0 : zero_add ... = k : nat.sub_zero) (take k, assume H : succ k ≤ 0, absurd H !not_succ_le_zero) (take k l, assume IH : k ≤ l → k + (l - k) = l, take H : succ k ≤ succ l, calc succ k + (succ l - succ k) = succ k + (l - k) : succ_sub_succ ... = succ (k + (l - k)) : succ_add ... = succ l : IH (le_of_succ_le_succ H)) theorem add_sub_of_ge {n m : ℕ} (H : n ≥ m) : n + (m - n) = n := calc n + (m - n) = n + 0 : sub_eq_zero_of_le H ... = n : add_zero protected theorem sub_add_cancel {n m : ℕ} : n ≥ m → n - m + m = n := !add.comm ▸ !add_sub_of_le theorem sub_add_of_le {n m : ℕ} : n ≤ m → n - m + m = m := !add.comm ▸ add_sub_of_ge theorem sub.cases {P : ℕ → Prop} {n m : ℕ} (H1 : n ≤ m → P 0) (H2 : ∀k, m + k = n -> P k) : P (n - m) := or.elim !le.total (assume H3 : n ≤ m, (sub_eq_zero_of_le H3)⁻¹ ▸ (H1 H3)) (assume H3 : m ≤ n, H2 (n - m) (add_sub_of_le H3)) theorem exists_sub_eq_of_le {n m : ℕ} (H : n ≤ m) : ∃k, m - k = n := obtain (k : ℕ) (Hk : n + k = m), from le.elim H, exists.intro k (calc m - k = n + k - k : by rewrite Hk ... = n : nat.add_sub_cancel) protected theorem add_sub_assoc {m k : ℕ} (H : k ≤ m) (n : ℕ) : n + m - k = n + (m - k) := have l1 : k ≤ m → n + m - k = n + (m - k), from sub_induction k m (by simp) (take k : ℕ, assume H : succ k ≤ 0, absurd H !not_succ_le_zero) (take k m, assume IH : k ≤ m → n + m - k = n + (m - k), take H : succ k ≤ succ m, calc n + succ m - succ k = succ (n + m) - succ k : add_succ ... = n + m - k : succ_sub_succ ... = n + (m - k) : IH (le_of_succ_le_succ H) ... = n + (succ m - succ k) : succ_sub_succ), l1 H theorem le_of_sub_eq_zero {n m : ℕ} : n - m = 0 → n ≤ m := sub.cases (assume H1 : n ≤ m, assume H2 : 0 = 0, H1) (take k : ℕ, assume H1 : m + k = n, assume H2 : k = 0, have H3 : n = m, from !add_zero ▸ H2 ▸ H1⁻¹, H3 ▸ !le.refl) theorem sub_sub.cases {P : ℕ → ℕ → Prop} {n m : ℕ} (H1 : ∀k, n = m + k -> P k 0) (H2 : ∀k, m = n + k → P 0 k) : P (n - m) (m - n) := or.elim !le.total (assume H3 : n ≤ m, (sub_eq_zero_of_le H3)⁻¹ ▸ (H2 (m - n) (add_sub_of_le H3)⁻¹)) (assume H3 : m ≤ n, (sub_eq_zero_of_le H3)⁻¹ ▸ (H1 (n - m) (add_sub_of_le H3)⁻¹)) protected theorem sub_eq_of_add_eq {n m k : ℕ} (H : n + m = k) : k - n = m := have H2 : k - n + n = m + n, from calc k - n + n = k : nat.sub_add_cancel (le.intro H) ... = n + m : H⁻¹ ... = m + n : !add.comm, add.right_cancel H2 protected theorem eq_sub_of_add_eq {a b c : ℕ} (H : a + c = b) : a = b - c := (nat.sub_eq_of_add_eq (!add.comm ▸ H))⁻¹ protected theorem sub_eq_of_eq_add {a b c : ℕ} (H : a = c + b) : a - b = c := nat.sub_eq_of_add_eq (!add.comm ▸ H⁻¹) protected theorem sub_le_sub_right {n m : ℕ} (H : n ≤ m) (k : ℕ) : n - k ≤ m - k := obtain (l : ℕ) (Hl : n + l = m), from le.elim H, or.elim !le.total (assume H2 : n ≤ k, (sub_eq_zero_of_le H2)⁻¹ ▸ !zero_le) (assume H2 : k ≤ n, have H3 : n - k + l = m - k, from calc n - k + l = l + (n - k) : by simp ... = l + n - k : nat.add_sub_assoc H2 l ... = m - k : by simp, le.intro H3) protected theorem sub_le_sub_left {n m : ℕ} (H : n ≤ m) (k : ℕ) : k - m ≤ k - n := obtain (l : ℕ) (Hl : n + l = m), from le.elim H, sub.cases (assume H2 : k ≤ m, !zero_le) (take m' : ℕ, assume Hm : m + m' = k, have H3 : n ≤ k, from le.trans H (le.intro Hm), have H4 : m' + l + n = k - n + n, by simp, le.intro (add.right_cancel H4)) protected theorem sub_pos_of_lt {m n : ℕ} (H : m < n) : n - m > 0 := assert H1 : n = n - m + m, from (nat.sub_add_cancel (le_of_lt H))⁻¹, have H2 : 0 + m < n - m + m, begin rewrite [zero_add, -H1], exact H end, !lt_of_add_lt_add_right H2 protected theorem lt_of_sub_pos {m n : ℕ} (H : n - m > 0) : m < n := lt_of_not_ge (take H1 : m ≥ n, have H2 : n - m = 0, from sub_eq_zero_of_le H1, !lt.irrefl (H2 ▸ H)) protected theorem lt_of_sub_lt_sub_right {n m k : ℕ} (H : n - k < m - k) : n < m := lt_of_not_ge (assume H1 : m ≤ n, have H2 : m - k ≤ n - k, from nat.sub_le_sub_right H1 _, not_le_of_gt H H2) protected theorem lt_of_sub_lt_sub_left {n m k : ℕ} (H : n - m < n - k) : k < m := lt_of_not_ge (assume H1 : m ≤ k, have H2 : n - k ≤ n - m, from nat.sub_le_sub_left H1 _, not_le_of_gt H H2) protected theorem sub_lt_sub_add_sub (n m k : ℕ) : n - k ≤ (n - m) + (m - k) := sub.cases (assume H : n ≤ m, (zero_add (m - k))⁻¹ ▸ nat.sub_le_sub_right H k) (take mn : ℕ, assume Hmn : m + mn = n, sub.cases (assume H : m ≤ k, have H2 : n - k ≤ n - m, from nat.sub_le_sub_left H n, assert H3 : n - k ≤ mn, from nat.sub_eq_of_add_eq Hmn ▸ H2, show n - k ≤ mn + 0, begin rewrite add_zero, assumption end) (take km : ℕ, assume Hkm : k + km = m, have H : k + (mn + km) = n, from calc k + (mn + km) = k + km + mn : by simp ... = m + mn : Hkm ... = n : Hmn, have H2 : n - k = mn + km, from nat.sub_eq_of_add_eq H, H2 ▸ !le.refl)) protected theorem sub_lt_self {m n : ℕ} (H1 : m > 0) (H2 : n > 0) : m - n < m := calc m - n = succ (pred m) - n : succ_pred_of_pos H1 ... = succ (pred m) - succ (pred n) : succ_pred_of_pos H2 ... = pred m - pred n : succ_sub_succ ... ≤ pred m : sub_le ... < succ (pred m) : lt_succ_self ... = m : succ_pred_of_pos H1 protected theorem le_sub_of_add_le {m n k : ℕ} (H : m + k ≤ n) : m ≤ n - k := calc m = m + k - k : nat.add_sub_cancel ... ≤ n - k : nat.sub_le_sub_right H k protected theorem lt_sub_of_add_lt {m n k : ℕ} (H : m + k < n) (H2 : k ≤ n) : m < n - k := lt_of_succ_le (nat.le_sub_of_add_le (calc succ m + k = succ (m + k) : succ_add_eq_succ_add ... ≤ n : succ_le_of_lt H)) protected theorem sub_lt_of_lt_add {v n m : nat} (h₁ : v < n + m) (h₂ : n ≤ v) : v - n < m := have succ v ≤ n + m, from succ_le_of_lt h₁, have succ (v - n) ≤ m, from calc succ (v - n) = succ v - n : succ_sub h₂ ... ≤ n + m - n : nat.sub_le_sub_right this n ... = m : nat.add_sub_cancel_left, lt_of_succ_le this /- distance -/ definition dist [reducible] (n m : ℕ) := (n - m) + (m - n) theorem dist.comm (n m : ℕ) : dist n m = dist m n := by simp theorem dist_self (n : ℕ) : dist n n = 0 := by simp theorem eq_of_dist_eq_zero {n m : ℕ} (H : dist n m = 0) : n = m := have H2 : n - m = 0, from eq_zero_of_add_eq_zero_right H, have H3 : n ≤ m, from le_of_sub_eq_zero H2, have H4 : m - n = 0, from eq_zero_of_add_eq_zero_left H, have H5 : m ≤ n, from le_of_sub_eq_zero H4, le.antisymm H3 H5 theorem dist_eq_zero {n m : ℕ} (H : n = m) : dist n m = 0 := by substvars; rewrite [↑dist, *nat.sub_self, add_zero] theorem dist_eq_sub_of_le {n m : ℕ} (H : n ≤ m) : dist n m = m - n := calc dist n m = 0 + (m - n) : {sub_eq_zero_of_le H} ... = m - n : zero_add theorem dist_eq_sub_of_lt {n m : ℕ} (H : n < m) : dist n m = m - n := dist_eq_sub_of_le (le_of_lt H) theorem dist_eq_sub_of_ge {n m : ℕ} (H : n ≥ m) : dist n m = n - m := !dist.comm ▸ dist_eq_sub_of_le H theorem dist_eq_sub_of_gt {n m : ℕ} (H : n > m) : dist n m = n - m := dist_eq_sub_of_ge (le_of_lt H) theorem dist_zero_right (n : ℕ) : dist n 0 = n := dist_eq_sub_of_ge !zero_le ⬝ !nat.sub_zero theorem dist_zero_left (n : ℕ) : dist 0 n = n := dist_eq_sub_of_le !zero_le ⬝ !nat.sub_zero theorem dist.intro {n m k : ℕ} (H : n + m = k) : dist k n = m := calc dist k n = k - n : dist_eq_sub_of_ge (le.intro H) ... = m : nat.sub_eq_of_add_eq H theorem dist_add_add_right (n k m : ℕ) : dist (n + k) (m + k) = dist n m := calc dist (n + k) (m + k) = ((n+k) - (m+k)) + ((m+k)-(n+k)) : rfl ... = (n - m) + ((m + k) - (n + k)) : nat.add_sub_add_right ... = (n - m) + (m - n) : nat.add_sub_add_right theorem dist_add_add_left (k n m : ℕ) : dist (k + n) (k + m) = dist n m := begin rewrite [add.comm k n, add.comm k m]; apply dist_add_add_right end theorem dist_add_eq_of_ge {n m : ℕ} (H : n ≥ m) : dist n m + m = n := calc dist n m + m = n - m + m : {dist_eq_sub_of_ge H} ... = n : nat.sub_add_cancel H theorem dist_eq_intro {n m k l : ℕ} (H : n + m = k + l) : dist n k = dist l m := calc dist n k = dist (n + m) (k + m) : dist_add_add_right ... = dist (k + l) (k + m) : H ... = dist l m : dist_add_add_left theorem dist_sub_eq_dist_add_left {n m : ℕ} (H : n ≥ m) (k : ℕ) : dist (n - m) k = dist n (k + m) := have H2 : n - m + (k + m) = k + n, from calc n - m + (k + m) = n - m + m + k : by simp ... = n + k : nat.sub_add_cancel H ... = k + n : by simp, dist_eq_intro H2 theorem dist_sub_eq_dist_add_right {k m : ℕ} (H : k ≥ m) (n : ℕ) : dist n (k - m) = dist (n + m) k := dist.comm (k - m) n ▸ dist.comm k (n + m) ▸ dist_sub_eq_dist_add_left H n theorem dist.triangle_inequality (n m k : ℕ) : dist n k ≤ dist n m + dist m k := have (n - m) + (m - k) + ((k - m) + (m - n)) = (n - m) + (m - n) + ((m - k) + (k - m)), by simp, this ▸ add_le_add !nat.sub_lt_sub_add_sub !nat.sub_lt_sub_add_sub theorem dist_add_add_le_add_dist_dist (n m k l : ℕ) : dist (n + m) (k + l) ≤ dist n k + dist m l := assert H : dist (n + m) (k + m) + dist (k + m) (k + l) = dist n k + dist m l, by rewrite [dist_add_add_left, dist_add_add_right], by rewrite -H; apply dist.triangle_inequality theorem dist_mul_right (n k m : ℕ) : dist (n * k) (m * k) = dist n m * k := assert ∀ n m, dist n m = n - m + (m - n), from take n m, rfl, by rewrite [this, this n m, right_distrib, *nat.mul_sub_right_distrib] theorem dist_mul_left (k n m : ℕ) : dist (k * n) (k * m) = k * dist n m := begin rewrite [mul.comm k n, mul.comm k m, dist_mul_right, mul.comm] end theorem dist_mul_dist (n m k l : ℕ) : dist n m * dist k l = dist (n * k + m * l) (n * l + m * k) := have aux : ∀k l, k ≥ l → dist n m * dist k l = dist (n * k + m * l) (n * l + m * k), from take k l : ℕ, assume H : k ≥ l, have H2 : m * k ≥ m * l, from !mul_le_mul_left H, have H3 : n * l + m * k ≥ m * l, from le.trans H2 !le_add_left, calc dist n m * dist k l = dist n m * (k - l) : dist_eq_sub_of_ge H ... = dist (n * (k - l)) (m * (k - l)) : dist_mul_right ... = dist (n * k - n * l) (m * k - m * l) : by rewrite [*nat.mul_sub_left_distrib] ... = dist (n * k) (m * k - m * l + n * l) : dist_sub_eq_dist_add_left (!mul_le_mul_left H) ... = dist (n * k) (n * l + (m * k - m * l)) : add.comm ... = dist (n * k) (n * l + m * k - m * l) : nat.add_sub_assoc H2 (n * l) ... = dist (n * k + m * l) (n * l + m * k) : dist_sub_eq_dist_add_right H3 _, or.elim !le.total (assume H : k ≤ l, !dist.comm ▸ !dist.comm ▸ aux l k H) (assume H : l ≤ k, aux k l H) lemma dist_eq_max_sub_min {i j : nat} : dist i j = (max i j) - min i j := or.elim (lt_or_ge i j) (suppose i < j, by rewrite [max_eq_right_of_lt this, min_eq_left_of_lt this, dist_eq_sub_of_lt this]) (suppose i ≥ j, by rewrite [max_eq_left this , min_eq_right this, dist_eq_sub_of_ge this]) lemma dist_succ {i j : nat} : dist (succ i) (succ j) = dist i j := by rewrite [↑dist, *succ_sub_succ] lemma dist_le_max {i j : nat} : dist i j ≤ max i j := begin rewrite dist_eq_max_sub_min, apply sub_le end lemma dist_pos_of_ne {i j : nat} : i ≠ j → dist i j > 0 := assume Pne, lt.by_cases (suppose i < j, begin rewrite [dist_eq_sub_of_lt this], apply nat.sub_pos_of_lt this end) (suppose i = j, by contradiction) (suppose i > j, begin rewrite [dist_eq_sub_of_gt this], apply nat.sub_pos_of_lt this end) end nat