/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Jakob von Raumer Basic datatypes -/ prelude notation [parsing-only] `Type'` := Type.{_+1} notation [parsing-only] `Type₊` := Type.{_+1} notation `Type₀` := Type.{0} notation `Type₁` := Type.{1} notation `Type₂` := Type.{2} notation `Type₃` := Type.{3} inductive poly_unit.{l} : Type.{l} := star : poly_unit inductive unit : Type₀ := star : unit inductive empty : Type₀ inductive eq.{l} {A : Type.{l}} (a : A) : A → Type.{l} := refl : eq a a structure lift.{l₁ l₂} (A : Type.{l₁}) : Type.{max l₁ l₂} := up :: (down : A) inductive prod (A B : Type) := mk : A → B → prod A B definition prod.pr1 [reducible] [unfold-c 3] {A B : Type} (p : prod A B) : A := prod.rec (λ a b, a) p definition prod.pr2 [reducible] [unfold-c 3] {A B : Type} (p : prod A B) : B := prod.rec (λ a b, b) p definition prod.destruct [reducible] := @prod.cases_on inductive sum (A B : Type) : Type := | inl {} : A → sum A B | inr {} : B → sum A B definition sum.intro_left [reducible] {A : Type} (B : Type) (a : A) : sum A B := sum.inl a definition sum.intro_right [reducible] (A : Type) {B : Type} (b : B) : sum A B := sum.inr b inductive sigma {A : Type} (B : A → Type) := mk : Π (a : A), B a → sigma B definition sigma.pr1 [reducible] [unfold-c 3] {A : Type} {B : A → Type} (p : sigma B) : A := sigma.rec (λ a b, a) p definition sigma.pr2 [reducible] [unfold-c 3] {A : Type} {B : A → Type} (p : sigma B) : B (sigma.pr1 p) := sigma.rec (λ a b, b) p -- pos_num and num are two auxiliary datatypes used when parsing numerals such as 13, 0, 26. -- The parser will generate the terms (pos (bit1 (bit1 (bit0 one)))), zero, and (pos (bit0 (bit1 (bit1 one)))). -- This representation can be coerced in whatever we want (e.g., naturals, integers, reals, etc). inductive pos_num : Type := | one : pos_num | bit1 : pos_num → pos_num | bit0 : pos_num → pos_num namespace pos_num definition succ (a : pos_num) : pos_num := pos_num.rec_on a (bit0 one) (λn r, bit0 r) (λn r, bit1 n) end pos_num inductive num : Type := | zero : num | pos : pos_num → num namespace num open pos_num definition succ (a : num) : num := num.rec_on a (pos one) (λp, pos (succ p)) end num inductive bool : Type := | ff : bool | tt : bool inductive char : Type := mk : bool → bool → bool → bool → bool → bool → bool → bool → char inductive string : Type := | empty : string | str : char → string → string inductive nat := | zero : nat | succ : nat → nat inductive option (A : Type) : Type := | none {} : option A | some : A → option A