/- Copyright (c) 2014 Parikshit Khanna. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.list.basic Authors: Parikshit Khanna, Jeremy Avigad, Leonardo de Moura Basic properties of lists. -/ import logic tools.helper_tactics data.nat.basic open eq.ops helper_tactics nat inductive list (T : Type) : Type := nil {} : list T, cons : T → list T → list T namespace list notation h :: t := cons h t notation `[` l:(foldr `,` (h t, cons h t) nil) `]` := l variable {T : Type} /- append -/ definition append : list T → list T → list T, append nil l := l, append (h :: s) t := h :: (append s t) notation l₁ ++ l₂ := append l₁ l₂ theorem append_nil_left (t : list T) : nil ++ t = t theorem append_cons (x : T) (s t : list T) : (x::s) ++ t = x::(s ++ t) theorem append_nil_right : ∀ (t : list T), t ++ nil = t, append_nil_right nil := rfl, append_nil_right (a :: l) := calc (a :: l) ++ nil = a :: (l ++ nil) : rfl ... = a :: l : append_nil_right l theorem append.assoc : ∀ (s t u : list T), s ++ t ++ u = s ++ (t ++ u), append.assoc nil t u := rfl, append.assoc (a :: l) t u := calc (a :: l) ++ t ++ u = a :: (l ++ t ++ u) : rfl ... = a :: (l ++ (t ++ u)) : append.assoc l t u ... = (a :: l) ++ (t ++ u) : rfl /- length -/ definition length : list T → nat, length nil := 0, length (a :: l) := length l + 1 theorem length_nil : length (@nil T) = 0 theorem length_cons (x : T) (t : list T) : length (x::t) = length t + 1 theorem length_append : ∀ (s t : list T), length (s ++ t) = length s + length t, length_append nil t := calc length (nil ++ t) = length t : rfl ... = length nil + length t : zero_add, length_append (a :: s) t := calc length (a :: s ++ t) = length (s ++ t) + 1 : rfl ... = length s + length t + 1 : length_append s t ... = (length s + 1) + length t : add.succ_left ... = length (a :: s) + length t : rfl -- add_rewrite length_nil length_cons /- concat -/ definition concat : Π (x : T), list T → list T, concat a nil := [a], concat a (b :: l) := b :: concat a l theorem concat_nil (x : T) : concat x nil = [x] theorem concat_cons (x y : T) (l : list T) : concat x (y::l) = y::(concat x l) theorem concat_eq_append (a : T) : ∀ (l : list T), concat a l = l ++ [a], concat_eq_append nil := rfl, concat_eq_append (b :: l) := calc concat a (b :: l) = b :: (concat a l) : rfl ... = b :: (l ++ [a]) : concat_eq_append l ... = (b :: l) ++ [a] : rfl -- add_rewrite append_nil append_cons /- reverse -/ definition reverse : list T → list T, reverse nil := nil, reverse (a :: l) := concat a (reverse l) theorem reverse_nil : reverse (@nil T) = nil theorem reverse_cons (x : T) (l : list T) : reverse (x::l) = concat x (reverse l) theorem reverse_singleton (x : T) : reverse [x] = [x] theorem reverse_append : ∀ (s t : list T), reverse (s ++ t) = (reverse t) ++ (reverse s), reverse_append nil t2 := calc reverse (nil ++ t2) = reverse t2 : rfl ... = (reverse t2) ++ nil : (append_nil_right (reverse t2))⁻¹ ... = (reverse t2) ++ (reverse nil) : {reverse_nil⁻¹}, reverse_append (a2 :: s2) t2 := calc reverse ((a2 :: s2) ++ t2) = concat a2 (reverse (s2 ++ t2)) : rfl ... = concat a2 (reverse t2 ++ reverse s2) : {reverse_append s2 t2} ... = (reverse t2 ++ reverse s2) ++ [a2] : concat_eq_append ... = reverse t2 ++ (reverse s2 ++ [a2]) : append.assoc ... = reverse t2 ++ concat a2 (reverse s2) : {concat_eq_append a2 (reverse s2)⁻¹} ... = reverse t2 ++ reverse (a2 :: s2) : rfl theorem reverse_reverse : ∀ (l : list T), reverse (reverse l) = l, reverse_reverse nil := rfl, reverse_reverse (a :: l) := calc reverse (reverse (a :: l)) = reverse (concat a (reverse l)) : rfl ... = reverse (reverse l ++ [a]) : {concat_eq_append a (reverse l)} ... = reverse [a] ++ reverse (reverse l) : {reverse_append (reverse l) [a]} ... = reverse [a] ++ l : {reverse_reverse l} ... = a :: l : rfl theorem concat_eq_reverse_cons (x : T) (l : list T) : concat x l = reverse (x :: reverse l) := calc concat x l = concat x (reverse (reverse l)) : {(reverse_reverse l)⁻¹} ... = reverse (x :: reverse l) : rfl /- head and tail -/ definition head [h : inhabited T] : list T → T, head nil := arbitrary T, head (a :: l) := a theorem head_cons [h : inhabited T] (a : T) (l : list T) : head (a::l) = a theorem head_concat [h : inhabited T] {s : list T} (t : list T) : s ≠ nil → head (s ++ t) = head s := cases_on s (take H : nil ≠ nil, absurd rfl H) (take x s, take H : x::s ≠ nil, calc head (x::s ++ t) = head (x::(s ++ t)) : {!append_cons} ... = x : !head_cons ... = head (x::s) : !head_cons⁻¹) definition tail : list T → list T, tail nil := nil, tail (a :: l) := l theorem tail_nil : tail (@nil T) = nil theorem tail_cons (a : T) (l : list T) : tail (a::l) = l theorem cons_head_tail [h : inhabited T] {l : list T} : l ≠ nil → (head l)::(tail l) = l := cases_on l (assume H : nil ≠ nil, absurd rfl H) (take x l, assume H : x::l ≠ nil, rfl) /- list membership -/ definition mem : T → list T → Prop, mem a nil := false, mem a (b :: l) := a = b ∨ mem a l notation e ∈ s := mem e s theorem mem_nil (x : T) : x ∈ nil ↔ false := iff.rfl theorem mem_cons (x y : T) (l : list T) : x ∈ y::l ↔ (x = y ∨ x ∈ l) := iff.rfl theorem mem_concat_imp_or {x : T} {s t : list T} : x ∈ s ++ t → x ∈ s ∨ x ∈ t := induction_on s or.inr (take y s, assume IH : x ∈ s ++ t → x ∈ s ∨ x ∈ t, assume H1 : x ∈ y::s ++ t, have H2 : x = y ∨ x ∈ s ++ t, from H1, have H3 : x = y ∨ x ∈ s ∨ x ∈ t, from or_of_or_of_imp_right H2 IH, iff.elim_right or.assoc H3) theorem mem_or_imp_concat {x : T} {s t : list T} : x ∈ s ∨ x ∈ t → x ∈ s ++ t := induction_on s (take H, or.elim H false.elim (assume H, H)) (take y s, assume IH : x ∈ s ∨ x ∈ t → x ∈ s ++ t, assume H : x ∈ y::s ∨ x ∈ t, or.elim H (assume H1, or.elim H1 (take H2 : x = y, or.inl H2) (take H2 : x ∈ s, or.inr (IH (or.inl H2)))) (assume H1 : x ∈ t, or.inr (IH (or.inr H1)))) theorem mem_concat (x : T) (s t : list T) : x ∈ s ++ t ↔ x ∈ s ∨ x ∈ t := iff.intro mem_concat_imp_or mem_or_imp_concat theorem mem_split {x : T} {l : list T} : x ∈ l → ∃s t : list T, l = s ++ (x::t) := induction_on l (take H : x ∈ nil, false.elim (iff.elim_left !mem_nil H)) (take y l, assume IH : x ∈ l → ∃s t : list T, l = s ++ (x::t), assume H : x ∈ y::l, or.elim H (assume H1 : x = y, exists.intro nil (!exists.intro (H1 ▸ rfl))) (assume H1 : x ∈ l, obtain s (H2 : ∃t : list T, l = s ++ (x::t)), from IH H1, obtain t (H3 : l = s ++ (x::t)), from H2, have H4 : y :: l = (y::s) ++ (x::t), from H3 ▸ rfl, !exists.intro (!exists.intro H4))) definition mem.is_decidable [instance] (H : decidable_eq T) (x : T) (l : list T) : decidable (x ∈ l) := rec_on l (decidable.inr (not_of_iff_false !mem_nil)) (take (h : T) (l : list T) (iH : decidable (x ∈ l)), show decidable (x ∈ h::l), from decidable.rec_on iH (assume Hp : x ∈ l, decidable.rec_on (H x h) (assume Heq : x = h, decidable.inl (or.inl Heq)) (assume Hne : x ≠ h, decidable.inl (or.inr Hp))) (assume Hn : ¬x ∈ l, decidable.rec_on (H x h) (assume Heq : x = h, decidable.inl (or.inl Heq)) (assume Hne : x ≠ h, have H1 : ¬(x = h ∨ x ∈ l), from assume H2 : x = h ∨ x ∈ l, or.elim H2 (assume Heq, absurd Heq Hne) (assume Hp, absurd Hp Hn), have H2 : ¬x ∈ h::l, from iff.elim_right (not_iff_not_of_iff !mem_cons) H1, decidable.inr H2))) /- find -/ section variable [H : decidable_eq T] include H definition find : T → list T → nat, find a nil := 0, find a (b :: l) := if a = b then 0 else succ (find a l) theorem find_nil (x : T) : find x nil = 0 theorem find_cons (x y : T) (l : list T) : find x (y::l) = if x = y then 0 else succ (find x l) theorem find.not_mem {l : list T} {x : T} : ¬x ∈ l → find x l = length l := rec_on l (assume P₁ : ¬x ∈ nil, _) (take y l, assume iH : ¬x ∈ l → find x l = length l, assume P₁ : ¬x ∈ y::l, have P₂ : ¬(x = y ∨ x ∈ l), from iff.elim_right (not_iff_not_of_iff !mem_cons) P₁, have P₃ : ¬x = y ∧ ¬x ∈ l, from (iff.elim_left not_or_iff_not_and_not P₂), calc find x (y::l) = if x = y then 0 else succ (find x l) : !find_cons ... = succ (find x l) : if_neg (and.elim_left P₃) ... = succ (length l) : {iH (and.elim_right P₃)} ... = length (y::l) : !length_cons⁻¹) end /- nth element -/ definition nth [h : inhabited T] : list T → nat → T, nth nil n := arbitrary T, nth (a :: l) 0 := a, nth (a :: l) (n+1) := nth l n theorem nth_zero [h : inhabited T] (a : T) (l : list T) : nth (a :: l) 0 = a theorem nth_succ [h : inhabited T] (a : T) (l : list T) (n : nat) : nth (a::l) (n+1) = nth l n end list