/- Copyright (c) 2015 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad The power operation on monoids and groups. We separate this from group, because it depends on nat, which in turn depends on other parts of algebra. We have "pow a n" for natural number powers, and "gpow a i" for integer powers. The notation a^n is used for the first, but users can locally redefine it to gpow when needed. Note: power adopts the convention that 0^0=1. -/ import data.nat.basic data.int.basic variables {A : Type} structure has_pow_nat [class] (A : Type) := (pow_nat : A → nat → A) definition pow_nat {A : Type} [s : has_pow_nat A] : A → nat → A := has_pow_nat.pow_nat infix ` ^ ` := pow_nat structure has_pow_int [class] (A : Type) := (pow_int : A → int → A) definition pow_int {A : Type} [s : has_pow_int A] : A → int → A := has_pow_int.pow_int /- monoid -/ section monoid open nat variable [s : monoid A] include s definition monoid.pow (a : A) : ℕ → A | 0 := 1 | (n+1) := a * monoid.pow n definition monoid_has_pow_nat [instance] : has_pow_nat A := has_pow_nat.mk monoid.pow theorem pow_zero (a : A) : a^0 = 1 := rfl theorem pow_succ (a : A) (n : ℕ) : a^(succ n) = a * a^n := rfl theorem pow_one (a : A) : a^1 = a := !mul_one theorem pow_two (a : A) : a^2 = a * a := calc a^2 = a * (a * 1) : rfl ... = a * a : mul_one theorem pow_three (a : A) : a^3 = a * (a * a) := calc a^3 = a * (a * (a * 1)) : rfl ... = a * (a * a) : mul_one theorem pow_four (a : A) : a^4 = a * (a * (a * a)) := calc a^4 = a * a^3 : rfl ... = a * (a * (a * a)) : pow_three theorem pow_succ' (a : A) : ∀n, a^(succ n) = a^n * a | 0 := by rewrite [pow_succ, *pow_zero, one_mul, mul_one] | (succ n) := by rewrite [pow_succ, pow_succ' at {1}, pow_succ, mul.assoc] theorem one_pow : ∀ n : ℕ, 1^n = (1:A) | 0 := rfl | (succ n) := by rewrite [pow_succ, one_mul, one_pow] theorem pow_add (a : A) (m n : ℕ) : a^(m + n) = a^m * a^n := begin induction n with n ih, {krewrite [nat.add_zero, pow_zero, mul_one]}, rewrite [add_succ, *pow_succ', ih, mul.assoc] end theorem pow_mul (a : A) (m : ℕ) : ∀ n, a^(m * n) = (a^m)^n | 0 := by rewrite [nat.mul_zero, pow_zero] | (succ n) := by rewrite [nat.mul_succ, pow_add, pow_succ', pow_mul] theorem pow_comm (a : A) (m n : ℕ) : a^m * a^n = a^n * a^m := by rewrite [-*pow_add, add.comm] end monoid /- commutative monoid -/ section comm_monoid open nat variable [s : comm_monoid A] include s theorem mul_pow (a b : A) : ∀ n, (a * b)^n = a^n * b^n | 0 := by rewrite [*pow_zero, mul_one] | (succ n) := by rewrite [*pow_succ', mul_pow, *mul.assoc, mul.left_comm a] end comm_monoid section group variable [s : group A] include s section nat open nat theorem inv_pow (a : A) : ∀n, (a⁻¹)^n = (a^n)⁻¹ | 0 := by rewrite [*pow_zero, one_inv] | (succ n) := by rewrite [pow_succ, pow_succ', inv_pow, mul_inv] theorem pow_sub (a : A) {m n : ℕ} (H : m ≥ n) : a^(m - n) = a^m * (a^n)⁻¹ := assert H1 : m - n + n = m, from nat.sub_add_cancel H, have H2 : a^(m - n) * a^n = a^m, by rewrite [-pow_add, H1], eq_mul_inv_of_mul_eq H2 theorem pow_inv_comm (a : A) : ∀m n, (a⁻¹)^m * a^n = a^n * (a⁻¹)^m | 0 n := by rewrite [*pow_zero, one_mul, mul_one] | m 0 := by rewrite [*pow_zero, one_mul, mul_one] | (succ m) (succ n) := by rewrite [pow_succ' at {1}, pow_succ at {1}, pow_succ', pow_succ, *mul.assoc, inv_mul_cancel_left, mul_inv_cancel_left, pow_inv_comm] end nat open int definition gpow (a : A) : ℤ → A | (of_nat n) := a^n | -[1+n] := (a^(nat.succ n))⁻¹ open nat private lemma gpow_add_aux (a : A) (m n : nat) : gpow a ((of_nat m) + -[1+n]) = gpow a (of_nat m) * gpow a (-[1+n]) := or.elim (nat.lt_or_ge m (nat.succ n)) (assume H : (m < nat.succ n), assert H1 : (#nat nat.succ n - m > nat.zero), from nat.sub_pos_of_lt H, calc gpow a ((of_nat m) + -[1+n]) = gpow a (sub_nat_nat m (nat.succ n)) : rfl ... = gpow a (-[1+ nat.pred (nat.sub (nat.succ n) m)]) : {sub_nat_nat_of_lt H} ... = (a ^ (nat.succ (nat.pred (nat.sub (nat.succ n) m))))⁻¹ : rfl ... = (a ^ (nat.succ n) * (a ^ m)⁻¹)⁻¹ : by krewrite [succ_pred_of_pos H1, pow_sub a (nat.le_of_lt H)] ... = a ^ m * (a ^ (nat.succ n))⁻¹ : by rewrite [mul_inv, inv_inv] ... = gpow a (of_nat m) * gpow a (-[1+n]) : rfl) (assume H : (m ≥ nat.succ n), calc gpow a ((of_nat m) + -[1+n]) = gpow a (sub_nat_nat m (nat.succ n)) : rfl ... = gpow a (#nat m - nat.succ n) : {sub_nat_nat_of_ge H} ... = a ^ m * (a ^ (nat.succ n))⁻¹ : pow_sub a H ... = gpow a (of_nat m) * gpow a (-[1+n]) : rfl) theorem gpow_add (a : A) : ∀i j : int, gpow a (i + j) = gpow a i * gpow a j | (of_nat m) (of_nat n) := !pow_add | (of_nat m) -[1+n] := !gpow_add_aux | -[1+m] (of_nat n) := by rewrite [add.comm, gpow_add_aux, ↑gpow, -*inv_pow, pow_inv_comm] | -[1+m] -[1+n] := calc gpow a (-[1+m] + -[1+n]) = (a^(#nat nat.succ m + nat.succ n))⁻¹ : rfl ... = (a^(nat.succ m))⁻¹ * (a^(nat.succ n))⁻¹ : by rewrite [pow_add, pow_comm, mul_inv] ... = gpow a (-[1+m]) * gpow a (-[1+n]) : rfl theorem gpow_comm (a : A) (i j : ℤ) : gpow a i * gpow a j = gpow a j * gpow a i := by rewrite [-*gpow_add, add.comm] end group section ordered_ring open nat variable [s : linear_ordered_ring A] include s theorem pow_pos {a : A} (H : a > 0) (n : ℕ) : a ^ n > 0 := begin induction n, krewrite pow_zero, apply zero_lt_one, rewrite pow_succ', apply mul_pos, apply v_0, apply H end theorem pow_ge_one_of_ge_one {a : A} (H : a ≥ 1) (n : ℕ) : a ^ n ≥ 1 := begin induction n, krewrite pow_zero, apply le.refl, rewrite [pow_succ', -mul_one 1], apply mul_le_mul v_0 H zero_le_one, apply le_of_lt, apply pow_pos, apply gt_of_ge_of_gt H zero_lt_one end theorem pow_two_add (n : ℕ) : (2:A)^n + 2^n = 2^(succ n) := by rewrite [pow_succ', -one_add_one_eq_two, left_distrib, *mul_one] end ordered_ring /- additive monoid -/ section add_monoid variable [s : add_monoid A] include s local attribute add_monoid.to_monoid [trans_instance] open nat definition nmul : ℕ → A → A := λ n a, a^n infix [priority algebra.prio] `⬝` := nmul theorem zero_nmul (a : A) : (0:ℕ) ⬝ a = 0 := pow_zero a theorem succ_nmul (n : ℕ) (a : A) : nmul (succ n) a = a + (nmul n a) := pow_succ a n theorem succ_nmul' (n : ℕ) (a : A) : succ n ⬝ a = nmul n a + a := pow_succ' a n theorem nmul_zero (n : ℕ) : n ⬝ 0 = (0:A) := one_pow n theorem one_nmul (a : A) : 1 ⬝ a = a := pow_one a theorem add_nmul (m n : ℕ) (a : A) : (m + n) ⬝ a = (m ⬝ a) + (n ⬝ a) := pow_add a m n theorem mul_nmul (m n : ℕ) (a : A) : (m * n) ⬝ a = m ⬝ (n ⬝ a) := eq.subst (mul.comm n m) (pow_mul a n m) theorem nmul_comm (m n : ℕ) (a : A) : (m ⬝ a) + (n ⬝ a) = (n ⬝ a) + (m ⬝ a) := pow_comm a m n end add_monoid /- additive commutative monoid -/ section add_comm_monoid open nat variable [s : add_comm_monoid A] include s local attribute add_comm_monoid.to_comm_monoid [trans_instance] theorem nmul_add (n : ℕ) (a b : A) : n ⬝ (a + b) = (n ⬝ a) + (n ⬝ b) := mul_pow a b n end add_comm_monoid section add_group variable [s : add_group A] include s local attribute add_group.to_group [trans_instance] section nat open nat theorem nmul_neg (n : ℕ) (a : A) : n ⬝ (-a) = -(n ⬝ a) := inv_pow a n theorem sub_nmul {m n : ℕ} (a : A) (H : m ≥ n) : (m - n) ⬝ a = (m ⬝ a) + -(n ⬝ a) := pow_sub a H theorem nmul_neg_comm (m n : ℕ) (a : A) : (m ⬝ (-a)) + (n ⬝ a) = (n ⬝ a) + (m ⬝ (-a)) := pow_inv_comm a m n end nat open int definition imul : ℤ → A → A := λ i a, gpow a i theorem add_imul (i j : ℤ) (a : A) : imul (i + j) a = imul i a + imul j a := gpow_add a i j theorem imul_comm (i j : ℤ) (a : A) : imul i a + imul j a = imul j a + imul i a := gpow_comm a i j end add_group