/* Copyright (c) 2013 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #pragma once #include #include #include "util/lua.h" #include "util/list.h" #include "util/name.h" #include "kernel/formatter.h" #include "kernel/expr.h" #include "kernel/context.h" #include "kernel/environment.h" namespace lean { typedef std::pair hypothesis; typedef list hypotheses; class goal { hypotheses m_hypotheses; expr m_conclusion; public: goal() {} goal(hypotheses const & hs, expr const & c); hypotheses const & get_hypotheses() const { return m_hypotheses; } expr const & get_conclusion() const { return m_conclusion; } format pp(formatter const & fmt, options const & opts) const; name mk_unique_hypothesis_name(name const & suggestion) const; }; inline goal update(goal const & g, expr const & c) { return goal(g.get_hypotheses(), c); } inline goal update(goal const & g, hypotheses const & hs) { return goal(hs, g.get_conclusion()); } inline goal update(goal const & g, buffer const & hs) { return goal(to_list(hs.begin(), hs.end()), g.get_conclusion()); } inline hypotheses add_hypothesis(name const & h_name, expr const & h, hypotheses const & hs) { return cons(mk_pair(h_name, h), hs); } inline hypotheses add_hypothesis(hypothesis const & h, hypotheses const & hs) { return cons(h, hs); } /** \brief Functor for converting a proof for a goal \c g produced using to_goal(env, ctx, T) into a term of type \c t. That is, the goal was created to synthesize a proof term for a proposition/type \c T in a context \c ctx. This functor allows us to convert a proof for \c g into a term/expression \c p s.t. ctx |- p : T */ class goal_proof_fn { friend std::pair to_goal(ro_environment const & env, context const & ctx, expr const & t); std::vector m_constants; goal_proof_fn(std::vector && constants); public: expr operator()(expr const & pr) const; }; /** \brief Convert the synthesis problem ctx |- ?p : T into a goal, where \c T is a proposition (i.e., has type Boolean), and \c ?p is a proof we want to synthesize. We can use tactics for solving the resultant goal, and the functor \c goal_proof_fn to convert the proof for the goal into the proof term \c ?p. */ std::pair to_goal(ro_environment const & env, context const & ctx, expr const & t); UDATA_DEFS_CORE(hypotheses) UDATA_DEFS(goal) void open_goal(lua_State * L); }