definition Bool [inline] := Type.{0} definition false : Bool := ∀x : Bool, x check false theorem false_elim (C : Bool) (H : false) : C := H C definition eq {A : Type} (a b : A) := ∀ P : A → Bool, P a → P b check eq infix `=`:50 := eq theorem refl {A : Type} (a : A) : a = a := λ P H, H definition true : Bool := false = false theorem trivial : true := refl false theorem subst {A : Type} {P : A -> Bool} {a b : A} (H1 : a = b) (H2 : P a) : P b := H1 _ H2 theorem symm {A : Type} {a b : A} (H : a = b) : b = a := subst H (refl a) theorem trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c := subst H2 H1 inductive nat : Type := | zero : nat | succ : nat → nat print "using strict implicit arguments" abbreviation symmetric {A : Type} (R : A → A → Bool) := ∀ ⦃a b⦄, R a b → R b a check symmetric variable p : nat → nat → Bool check symmetric p axiom H1 : symmetric p axiom H2 : p zero (succ zero) check H1 check H1 H2 print "------------" print "using implicit arguments" abbreviation symmetric2 {A : Type} (R : A → A → Bool) := ∀ {a b}, R a b → R b a check symmetric2 check symmetric2 p axiom H3 : symmetric2 p axiom H4 : p zero (succ zero) check H3 check H3 H4 print "-----------------" print "using strict implicit arguments (ASCII notation)" abbreviation symmetric3 {A : Type} (R : A → A → Bool) := ∀ {{a b}}, R a b → R b a check symmetric3 check symmetric3 p axiom H5 : symmetric3 p axiom H6 : p zero (succ zero) check H5 check H5 H6