import tactic variable list : Type → Type variable nil {A : Type} : list A variable cons {A : Type} : A → list A → list A variable map {A B : Type} : (A → B) → list A → list B axiom map_cons {A B : Type} (f : A → B) (a : A) (l : list A) : map f (cons a l) = cons (f a) (map f l) axiom map_nil {A B : Type} (f : A → B) : (map f nil) = nil add_rewrite map_cons map_nil (* local m = simplifier_monitor(function(s, e) print("Visit, depth: " .. s:depth() .. ", " .. tostring(e)) end, function(s, e, new_e, pr) print("Step: " .. tostring(e) .. " ===> " .. tostring(new_e)) end, function(s, e, new_e, ceq, ceq_id) print("Rewrite using: " .. tostring(ceq_id)) print(" " .. tostring(e) .. " ===> " .. tostring(new_e)) end ) set_simplifier_monitor(m) *) theorem T1 : map (λ x, x + 1) (cons 1 (cons 2 nil)) = cons 2 (cons 3 nil) := by simp