/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.set.map Author: Jeremy Avigad, Andrew Zipperer Functions between subsets of finite types, bundled with the domain and range. -/ import data.set.function open eq.ops set record map {X Y : Type} (a : set X) (b : set Y) := (func : X → Y) (mapsto : maps_to func a b) attribute map.func [coercion] namespace map variables {X Y Z: Type} variables {a : set X} {b : set Y} {c : set Z} /- the equivalence relation -/ protected definition equiv [reducible] (f1 f2 : map a b) : Prop := eq_on f1 f2 a namespace equiv_notation infix `~` := map.equiv end equiv_notation open equiv_notation protected theorem equiv.refl (f : map a b) : f ~ f := take x, assume H, rfl protected theorem equiv.symm {f₁ f₂ : map a b} : f₁ ~ f₂ → f₂ ~ f₁ := assume H : f₁ ~ f₂, take x, assume Ha : x ∈ a, eq.symm (H Ha) protected theorem equiv.trans {f₁ f₂ f₃ : map a b} : f₁ ~ f₂ → f₂ ~ f₃ → f₁ ~ f₃ := assume H₁ : f₁ ~ f₂, assume H₂ : f₂ ~ f₃, take x, assume Ha : x ∈ a, eq.trans (H₁ Ha) (H₂ Ha) protected theorem equiv.is_equivalence {X Y : Type} (a : set X) (b : set Y) : equivalence (@equiv X Y a b) := mk_equivalence (@equiv X Y a b) (@equiv.refl X Y a b) (@equiv.symm X Y a b) (@equiv.trans X Y a b) /- compose -/ definition compose (g : map b c) (f : map a b) : map a c := map.mk (#function g ∘ f) (maps_to_compose (mapsto g) (mapsto f)) notation g ∘ f := compose g f /- range -/ definition range (f : map a b) : set Y := image f a theorem range_eq_range_of_equiv {f1 f2 : map a b} (H : f1 ~ f2) : range f1 = range f2 := image_eq_image_of_eq_on H /- injective -/ definition injective (f : map a b) : Prop := inj_on f a theorem injective_of_equiv {f1 f2 : map a b} (H1 : f1 ~ f2) (H2 : injective f1) : injective f2 := inj_on_of_eq_on H1 H2 theorem injective_compose {g : map b c} {f : map a b} (Hg : injective g) (Hf: injective f) : injective (g ∘ f) := inj_on_compose (mapsto f) Hg Hf /- surjective -/ definition surjective (f : map a b) : Prop := surj_on f a b theorem surjective_of_equiv {f1 f2 : map a b} (H1 : f1 ~ f2) (H2 : surjective f1) : surjective f2 := surj_on_of_eq_on H1 H2 theorem surjective_compose {g : map b c} {f : map a b} (Hg : surjective g) (Hf: surjective f) : surjective (g ∘ f) := surj_on_compose Hg Hf /- bijective -/ definition bijective (f : map a b) : Prop := injective f ∧ surjective f theorem bijective_of_equiv {f1 f2 : map a b} (H1 : f1 ~ f2) (H2 : bijective f1) : bijective f2 := and.intro (injective_of_equiv H1 (and.left H2)) (surjective_of_equiv H1 (and.right H2)) theorem bijective_compose {g : map b c} {f : map a b} (Hg : bijective g) (Hf: bijective f) : bijective (g ∘ f) := and.intro (injective_compose (and.left Hg) (and.left Hf)) (surjective_compose (and.right Hg) (and.right Hf)) /- left inverse -/ -- g is a left inverse to f definition left_inverse (g : map b a) (f : map a b) : Prop := left_inv_on g f a theorem left_inverse_of_equiv_left {g1 g2 : map b a} {f : map a b} (eqg : g1 ~ g2) (H : left_inverse g1 f) : left_inverse g2 f := left_inv_on_of_eq_on_left (mapsto f) eqg H theorem left_inverse_of_equiv_right {g : map b a} {f1 f2 : map a b} (eqf : f1 ~ f2) (H : left_inverse g f1) : left_inverse g f2 := left_inv_on_of_eq_on_right eqf H theorem injective_of_left_inverse {g : map b a} {f : map a b} (H : left_inverse g f) : injective f := inj_on_of_left_inv_on H theorem left_inverse_compose {f' : map b a} {g' : map c b} {g : map b c} {f : map a b} (Hf : left_inverse f' f) (Hg : left_inverse g' g) : left_inverse (f' ∘ g') (g ∘ f) := left_inv_on_compose (mapsto f) Hf Hg /- right inverse -/ -- g is a right inverse to f definition right_inverse (g : map b a) (f : map a b) : Prop := left_inverse f g theorem right_inverse_of_equiv_left {g1 g2 : map b a} {f : map a b} (eqg : g1 ~ g2) (H : right_inverse g1 f) : right_inverse g2 f := left_inverse_of_equiv_right eqg H theorem right_inverse_of_equiv_right {g : map b a} {f1 f2 : map a b} (eqf : f1 ~ f2) (H : right_inverse g f1) : right_inverse g f2 := left_inverse_of_equiv_left eqf H theorem surjective_of_right_inverse {g : map b a} {f : map a b} (H : right_inverse g f) : surjective f := surj_on_of_right_inv_on (mapsto g) H theorem right_inverse_compose {f' : map b a} {g' : map c b} {g : map b c} {f : map a b} (Hf : right_inverse f' f) (Hg : right_inverse g' g) : right_inverse (f' ∘ g') (g ∘ f) := left_inverse_compose Hg Hf theorem equiv_of_left_inverse_of_right_inverse {g1 g2 : map b a} {f : map a b} (H1 : left_inverse g1 f) (H2 : right_inverse g2 f) : g1 ~ g2 := eq_on_of_left_inv_of_right_inv (mapsto g2) H1 H2 /- inverse -/ -- g is an inverse to f definition is_inverse (g : map b a) (f : map a b) : Prop := left_inverse g f ∧ right_inverse g f theorem bijective_of_is_inverse {g : map b a} {f : map a b} (H : is_inverse g f) : bijective f := and.intro (injective_of_left_inverse (and.left H)) (surjective_of_right_inverse (and.right H)) end map