import data.fintype data.list data.sum data.nat open option list nat structure countable [class] (A : Type) := (pickle : A → nat) (unpickle : nat → option A) (picklek : ∀ a, unpickle (pickle a) = some a) open countable definition countable_fintype [instance] {A : Type} [h₁ : fintype A] [h₂ : decidable_eq A] : countable A := countable.mk (λ a, find a (elements_of A)) (λ n, nth (elements_of A) n) (λ a, find_nth (fintype.complete a)) definition countable_nat [instance] : countable nat := countable.mk (λ a, a) (λ n, some n) (λ a, rfl) definition countable_option [instance] {A : Type} [h : countable A] : countable (option A) := countable.mk (λ o, match o with | some a := succ (pickle a) | none := 0 end) (λ n, if n = 0 then some none else some (unpickle A (pred n))) (λ o, begin cases o with [a], begin esimp end, begin esimp, rewrite [if_neg !succ_ne_zero, pred_succ, countable.picklek] end end) section sum variables {A B : Type} variables [h₁ : countable A] [h₂ : countable B] include h₁ h₂ definition pickle_sum : sum A B → nat | (sum.inl a) := 2 * pickle a | (sum.inr b) := 2 * pickle b + 1 definition unpickle_sum (n : nat) : option (sum A B) := if n mod 2 = 0 then match unpickle A (n div 2) with | some a := some (sum.inl a) | none := none end else match unpickle B ((n - 1) div 2) with | some b := some (sum.inr b) | none := none end open decidable theorem unpickle_pickle_sum : ∀ s : sum A B, unpickle_sum (pickle_sum s) = some s | (sum.inl a) := assert aux : 2 > 0, from dec_trivial, begin esimp [pickle_sum, unpickle_sum], rewrite [mul_mod_right, if_pos (eq.refl 0), mul_div_cancel_left _ aux, countable.picklek] end | (sum.inr b) := assert aux₁ : 2 > 0, from dec_trivial, assert aux₂ : 1 mod 2 = 1, by rewrite [modulo_def], assert aux₃ : 1 ≠ 0, from dec_trivial, begin esimp [pickle_sum, unpickle_sum], rewrite [add.comm, add_mul_mod_self_left aux₁, aux₂, if_neg aux₃, add_sub_cancel_left, mul_div_cancel_left _ aux₁, countable.picklek] end definition countable_sum [instance] {A B : Type} [h₁ : countable A] [h₂ : countable B] : countable (sum A B) := countable.mk (λ s, pickle_sum s) (λ n, unpickle_sum n) (λ s, unpickle_pickle_sum s) end sum