/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.finset Author: Leonardo de Moura Combinators for finite sets -/ import data.finset.basic logic.identities open list quot subtype decidable perm function namespace finset section map variables {A B : Type} variable [h : decidable_eq B] include h definition map (f : A → B) (s : finset A) : finset B := quot.lift_on s (λ l, to_finset (list.map f (elt_of l))) (λ l₁ l₂ p, quot.sound (perm_erase_dup_of_perm (perm_map _ p))) theorem map_empty (f : A → B) : map f ∅ = ∅ := rfl end map section all variables {A : Type} definition all (s : finset A) (p : A → Prop) : Prop := quot.lift_on s (λ l, all (elt_of l) p) (λ l₁ l₂ p, foldr_eq_of_perm (λ a₁ a₂ q, propext !and.left_comm) p true) theorem all_empty (p : A → Prop) : all ∅ p = true := rfl theorem of_mem_of_all {p : A → Prop} {a : A} {s : finset A} : a ∈ s → all s p → p a := quot.induction_on s (λ l i h, list.of_mem_of_all i h) theorem all_implies {p q : A → Prop} {s : finset A} : all s p → (∀ x, p x → q x) → all s q := quot.induction_on s (λ l h₁ h₂, list.all_implies h₁ h₂) variable [h : decidable_eq A] include h theorem all_union {p : A → Prop} {s₁ s₂ : finset A} : all s₁ p → all s₂ p → all (s₁ ∪ s₂) p := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ a₁ a₂, all_union a₁ a₂) theorem all_of_all_union_left {p : A → Prop} {s₁ s₂ : finset A} : all (s₁ ∪ s₂) p → all s₁ p := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ a, list.all_of_all_union_left a) theorem all_of_all_union_right {p : A → Prop} {s₁ s₂ : finset A} : all (s₁ ∪ s₂) p → all s₂ p := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ a, list.all_of_all_union_right a) theorem all_insert_of_all {p : A → Prop} {a : A} {s : finset A} : p a → all s p → all (insert a s) p := quot.induction_on s (λ l h₁ h₂, list.all_insert_of_all h₁ h₂) theorem all_erase_of_all {p : A → Prop} (a : A) {s : finset A}: all s p → all (erase a s) p := quot.induction_on s (λ l h, list.all_erase_of_all a h) theorem all_inter_of_all_left {p : A → Prop} {s₁ : finset A} (s₂ : finset A) : all s₁ p → all (s₁ ∩ s₂) p := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ h, list.all_inter_of_all_left _ h) theorem all_inter_of_all_right {p : A → Prop} {s₁ : finset A} (s₂ : finset A) : all s₂ p → all (s₁ ∩ s₂) p := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ h, list.all_inter_of_all_right _ h) end all section cross_product variables {A B : Type} definition cross_product (s₁ : finset A) (s₂ : finset B) : finset (A × B) := quot.lift_on₂ s₁ s₂ (λ l₁ l₂, to_finset_of_nodup (list.cross_product (elt_of l₁) (elt_of l₂)) (nodup_cross_product (has_property l₁) (has_property l₂))) (λ v₁ v₂ w₁ w₂ p₁ p₂, quot.sound (perm_cross_product p₁ p₂)) infix * := cross_product theorem empty_cross_product (s : finset B) : @empty A * s = ∅ := quot.induction_on s (λ l, rfl) theorem mem_cross_product {a : A} {b : B} {s₁ : finset A} {s₂ : finset B} : a ∈ s₁ → b ∈ s₂ → (a, b) ∈ s₁ * s₂ := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ i₁ i₂, list.mem_cross_product i₁ i₂) theorem mem_of_mem_cross_product_left {a : A} {b : B} {s₁ : finset A} {s₂ : finset B} : (a, b) ∈ s₁ * s₂ → a ∈ s₁ := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ i, list.mem_of_mem_cross_product_left i) theorem mem_of_mem_cross_product_right {a : A} {b : B} {s₁ : finset A} {s₂ : finset B} : (a, b) ∈ s₁ * s₂ → b ∈ s₂ := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ i, list.mem_of_mem_cross_product_right i) theorem cross_product_empty (s : finset A) : s * @empty B = ∅ := ext (λ p, match p with | (a, b) := iff.intro (λ i, absurd (mem_of_mem_cross_product_right i) !not_mem_empty) (λ i, absurd i !not_mem_empty) end) end cross_product end finset