/- Copyright (c) 2016 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Eilenberg MacLane spaces -/ import hit.groupoid_quotient homotopy.hopf homotopy.freudenthal homotopy.homotopy_group open algebra pointed nat eq category group is_trunc iso unit trunc equiv is_conn function is_equiv trunc_index namespace EM open groupoid_quotient variables {G : Group} definition EM1' (G : Group) : Type := groupoid_quotient (Groupoid_of_Group G) definition EM1 [constructor] (G : Group) : Type* := pointed.MK (EM1' G) (elt star) definition base : EM1' G := elt star definition pth : G → base = base := pth definition resp_mul (g h : G) : pth (g * h) = pth g ⬝ pth h := resp_comp h g definition resp_one : pth (1 : G) = idp := resp_id star definition resp_inv (g : G) : pth (g⁻¹) = (pth g)⁻¹ := resp_inv g local attribute pointed.MK pointed.carrier EM1 EM1' [reducible] protected definition rec {P : EM1' G → Type} [H : Π(x : EM1' G), is_trunc 1 (P x)] (Pb : P base) (Pp : Π(g : G), Pb =[pth g] Pb) (Pmul : Π(g h : G), change_path (resp_mul g h) (Pp (g * h)) = Pp g ⬝o Pp h) (x : EM1' G) : P x := begin induction x, { induction g, exact Pb}, { induction a, induction b, exact Pp f}, { induction a, induction b, induction c, exact Pmul f g} end protected definition rec_on {P : EM1' G → Type} [H : Π(x : EM1' G), is_trunc 1 (P x)] (x : EM1' G) (Pb : P base) (Pp : Π(g : G), Pb =[pth g] Pb) (Pmul : Π(g h : G), change_path (resp_mul g h) (Pp (g * h)) = Pp g ⬝o Pp h) : P x := EM.rec Pb Pp Pmul x protected definition set_rec {P : EM1' G → Type} [H : Π(x : EM1' G), is_set (P x)] (Pb : P base) (Pp : Π(g : G), Pb =[pth g] Pb) (x : EM1' G) : P x := EM.rec Pb Pp !center x protected definition prop_rec {P : EM1' G → Type} [H : Π(x : EM1' G), is_prop (P x)] (Pb : P base) (x : EM1' G) : P x := EM.rec Pb !center !center x definition rec_pth {P : EM1' G → Type} [H : Π(x : EM1' G), is_trunc 1 (P x)] {Pb : P base} {Pp : Π(g : G), Pb =[pth g] Pb} (Pmul : Π(g h : G), change_path (resp_mul g h) (Pp (g * h)) = Pp g ⬝o Pp h) (g : G) : apd (EM.rec Pb Pp Pmul) (pth g) = Pp g := proof !rec_pth qed protected definition elim {P : Type} [is_trunc 1 P] (Pb : P) (Pp : Π(g : G), Pb = Pb) (Pmul : Π(g h : G), Pp (g * h) = Pp g ⬝ Pp h) (x : EM1' G) : P := begin induction x, { exact Pb}, { exact Pp f}, { exact Pmul f g} end protected definition elim_on [reducible] {P : Type} [is_trunc 1 P] (x : EM1' G) (Pb : P) (Pp : G → Pb = Pb) (Pmul : Π(g h : G), Pp (g * h) = Pp g ⬝ Pp h) : P := EM.elim Pb Pp Pmul x protected definition set_elim [reducible] {P : Type} [is_set P] (Pb : P) (Pp : G → Pb = Pb) (x : EM1' G) : P := EM.elim Pb Pp !center x protected definition prop_elim [reducible] {P : Type} [is_prop P] (Pb : P) (x : EM1' G) : P := EM.elim Pb !center !center x definition elim_pth {P : Type} [is_trunc 1 P] {Pb : P} {Pp : G → Pb = Pb} (Pmul : Π(g h : G), Pp (g * h) = Pp g ⬝ Pp h) (g : G) : ap (EM.elim Pb Pp Pmul) (pth g) = Pp g := proof !elim_pth qed protected definition elim_set.{u} (Pb : Set.{u}) (Pp : Π(g : G), Pb ≃ Pb) (Pmul : Π(g h : G) (x : Pb), Pp (g * h) x = Pp h (Pp g x)) (x : EM1' G) : Set.{u} := groupoid_quotient.elim_set (λu, Pb) (λu v, Pp) (λu v w g h, proof Pmul h g qed) x theorem elim_set_pth {Pb : Set} {Pp : Π(g : G), Pb ≃ Pb} (Pmul : Π(g h : G) (x : Pb), Pp (g * h) x = Pp h (Pp g x)) (g : G) : transport (EM.elim_set Pb Pp Pmul) (pth g) = Pp g := !elim_set_pth end EM attribute EM.base [constructor] attribute EM.rec EM.elim [unfold 7] [recursor 7] attribute EM.rec_on EM.elim_on [unfold 4] attribute EM.set_rec EM.set_elim [unfold 6] attribute EM.prop_rec EM.prop_elim EM.elim_set [unfold 5] namespace EM open groupoid_quotient variables (G : Group) definition base_eq_base_equiv : (base = base :> EM1 G) ≃ G := !elt_eq_elt_equiv definition fundamental_group_EM1 : π₁ (EM1 G) ≃g G := begin fapply isomorphism_of_equiv, { exact trunc_equiv_trunc 0 !base_eq_base_equiv ⬝e trunc_equiv 0 G}, { intros g h, induction g with p, induction h with q, exact encode_con p q} end proposition is_trunc_EM1 [instance] : is_trunc 1 (EM1 G) := !is_trunc_groupoid_quotient proposition is_trunc_EM1' [instance] : is_trunc 1 (EM1' G) := !is_trunc_groupoid_quotient proposition is_conn_EM1' [instance] : is_conn 0 (EM1' G) := by apply @is_conn_groupoid_quotient; esimp; exact _ proposition is_conn_EM1 [instance] : is_conn 0 (EM1 G) := is_conn_EM1' G variable {G} definition EM1_map [unfold 7] {X : Type*} (e : G → Ω X) (r : Πg h, e (g * h) = e g ⬝ e h) [is_conn 0 X] [is_trunc 1 X] : EM1 G → X := begin intro x, induction x using EM.elim, { exact Point X }, { exact e g }, { exact r g h } end /- Uniqueness of K(G, 1) -/ definition EM1_pmap [constructor] {X : Type*} (e : G → Ω X) (r : Πg h, e (g * h) = e g ⬝ e h) [is_conn 0 X] [is_trunc 1 X] : EM1 G →* X := pmap.mk (EM1_map e r) idp variable (G) definition loop_EM1 [constructor] : G ≃* Ω (EM1 G) := (pequiv_of_equiv (base_eq_base_equiv G) idp)⁻¹ᵉ* variable {G} definition loop_EM1_pmap {X : Type*} (e : G →* Ω X) (r : Πg h, e (g * h) = e g ⬝ e h) [is_conn 0 X] [is_trunc 1 X] : Ω→(EM1_pmap e r) ∘* loop_EM1 G ~* e := begin fapply phomotopy.mk, { intro g, refine !idp_con ⬝ elim_pth r g }, { apply is_set.elim } end definition EM1_pequiv'.{u} {G : Group.{u}} {X : pType.{u}} (e : G ≃* Ω X) (r : Πg h, e (g * h) = e g ⬝ e h) [is_conn 0 X] [is_trunc 1 X] : EM1 G ≃* X := begin apply pequiv_of_pmap (EM1_pmap e r), apply whitehead_principle_pointed 1, intro k, cases k with k, { apply @is_equiv_of_is_contr, all_goals (esimp; exact _)}, { cases k with k, { apply is_equiv_trunc_functor, esimp, apply is_equiv.homotopy_closed, rotate 1, { symmetry, exact phomotopy_pinv_right_of_phomotopy (loop_EM1_pmap _ _) }, apply is_equiv_compose e }, { apply @is_equiv_of_is_contr, do 2 exact trivial_homotopy_group_of_is_trunc _ (succ_lt_succ !zero_lt_succ)}} end definition EM1_pequiv.{u} {G : Group.{u}} {X : pType.{u}} (e : G ≃g π₁ X) [is_conn 0 X] [is_trunc 1 X] : EM1 G ≃* X := begin apply EM1_pequiv' (pequiv_of_isomorphism e ⬝e* ptrunc_pequiv 0 (Ω X)), refine equiv.preserve_binary_of_inv_preserve _ mul concat _, intro p q, exact to_respect_mul e⁻¹ᵍ (tr p) (tr q) end definition EM1_pequiv_type (X : Type*) [is_conn 0 X] [is_trunc 1 X] : EM1 (π₁ X) ≃* X := EM1_pequiv !isomorphism.refl end EM open hopf susp namespace EM /- EM1 G is an h-space if G is an abelian group. This allows us to construct K(G,n) for n ≥ 2 -/ variables {G : AbGroup} (n : ℕ) definition EM1_mul [unfold 2 3] (x x' : EM1' G) : EM1' G := begin induction x, { exact x'}, { induction x' using EM.set_rec, { exact pth g}, { exact abstract begin apply loop_pathover, apply square_of_eq, refine !resp_mul⁻¹ ⬝ _ ⬝ !resp_mul, exact ap pth !mul.comm end end}}, { refine EM.prop_rec _ x', apply resp_mul } end variable (G) definition EM1_mul_one (x : EM1' G) : EM1_mul x base = x := begin induction x using EM.set_rec, { reflexivity}, { apply eq_pathover_id_right, apply hdeg_square, refine EM.elim_pth _ g} end definition h_space_EM1 [constructor] [instance] : h_space (EM1' G) := begin fapply h_space.mk, { exact EM1_mul}, { exact base}, { intro x', reflexivity}, { apply EM1_mul_one} end /- K(G, n+1) -/ definition EMadd1 : ℕ → Type* | 0 := EM1 G | (n+1) := ptrunc (n+2) (psusp (EMadd1 n)) definition EMadd1_succ [unfold_full] (n : ℕ) : EMadd1 G (succ n) = ptrunc (n.+2) (psusp (EMadd1 G n)) := idp definition loop_EM2 : Ω[1] (EMadd1 G 1) ≃* EM1 G := hopf.delooping (EM1' G) idp definition is_conn_EMadd1 [instance] (n : ℕ) : is_conn n (EMadd1 G n) := begin induction n with n IH, { apply is_conn_EM1 }, { rewrite EMadd1_succ, esimp, exact _ } end definition is_trunc_EMadd1 [instance] (n : ℕ) : is_trunc (n+1) (EMadd1 G n) := begin cases n with n, { apply is_trunc_EM1 }, { apply is_trunc_trunc } end /- loops of an EM-space -/ definition loop_EMadd1 (n : ℕ) : EMadd1 G n ≃* Ω (EMadd1 G (succ n)) := begin cases n with n, { exact !loop_EM2⁻¹ᵉ* }, { rewrite [EMadd1_succ G (succ n)], refine (ptrunc_pequiv (succ n + 1) _)⁻¹ᵉ* ⬝e* _ ⬝e* (loop_ptrunc_pequiv _ _)⁻¹ᵉ*, have succ n + 1 ≤ 2 * succ n, from add_mul_le_mul_add n 1 1, refine freudenthal_pequiv _ this } end definition loopn_EMadd1_pequiv_EM1 (G : AbGroup) (n : ℕ) : EM1 G ≃* Ω[n] (EMadd1 G n) := begin induction n with n e, { reflexivity }, { refine _ ⬝e* !loopn_succ_in⁻¹ᵉ*, refine _ ⬝e* loopn_pequiv_loopn n !loop_EMadd1, exact e } end -- use loopn_EMadd1_pequiv_EM1 in this definition? definition loopn_EMadd1 (G : AbGroup) (n : ℕ) : G ≃* Ω[succ n] (EMadd1 G n) := begin induction n with n e, { apply loop_EM1 }, { refine _ ⬝e* !loopn_succ_in⁻¹ᵉ*, refine _ ⬝e* loopn_pequiv_loopn (succ n) !loop_EMadd1, exact e } end definition loopn_EMadd1_succ [unfold_full] (G : AbGroup) (n : ℕ) : loopn_EMadd1 G (succ n) ~* !loopn_succ_in⁻¹ᵉ* ∘* apn (succ n) !loop_EMadd1 ∘* loopn_EMadd1 G n := by reflexivity definition EM_up {G : AbGroup} {X : Type*} {n : ℕ} (e : Ω[succ (succ n)] X ≃* G) : Ω[succ n] (Ω X) ≃* G := !loopn_succ_in⁻¹ᵉ* ⬝e* e definition is_homomorphism_EM_up {G : AbGroup} {X : Type*} {n : ℕ} (e : Ω[succ (succ n)] X ≃* G) (r : Π(p q : Ω[succ (succ n)] X), e (p ⬝ q) = e p * e q) (p q : Ω[succ n] (Ω X)) : EM_up e (p ⬝ q) = EM_up e p * EM_up e q := begin refine _ ⬝ !r, apply ap e, esimp, apply apn_con end definition EMadd1_pmap [unfold 8] {G : AbGroup} {X : Type*} (n : ℕ) (e : Ω[succ n] X ≃* G) (r : Πp q, e (p ⬝ q) = e p * e q) [H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n →* X := begin revert X e r H1 H2, induction n with n f: intro X e r H1 H2, { exact EM1_pmap e⁻¹ᵉ* (equiv.inv_preserve_binary e concat mul r) }, rewrite [EMadd1_succ], exact ptrunc.elim ((succ n).+1) (psusp.elim (f _ (EM_up e) (is_homomorphism_EM_up e r) _ _)), end definition EMadd1_pmap_succ {G : AbGroup} {X : Type*} (n : ℕ) (e : Ω[succ (succ n)] X ≃* G) r [H1 : is_conn (succ n) X] [H2 : is_trunc ((succ n).+1) X] : EMadd1_pmap (succ n) e r = ptrunc.elim ((succ n).+1) (psusp.elim (EMadd1_pmap n (EM_up e) (is_homomorphism_EM_up e r))) := by reflexivity definition loop_EMadd1_pmap {G : AbGroup} {X : Type*} {n : ℕ} (e : Ω[succ (succ n)] X ≃* G) (r : Πp q, e (p ⬝ q) = e p * e q) [H1 : is_conn (succ n) X] [H2 : is_trunc ((succ n).+1) X] : Ω→(EMadd1_pmap (succ n) e r) ∘* loop_EMadd1 G n ~* EMadd1_pmap n (EM_up e) (is_homomorphism_EM_up e r) := begin cases n with n, { apply hopf_delooping_elim }, { refine !passoc⁻¹* ⬝* _, rewrite [EMadd1_pmap_succ (succ n)], refine pwhisker_right _ !ap1_ptrunc_elim ⬝* _, refine !passoc⁻¹* ⬝* _, refine pwhisker_right _ (ptrunc_elim_freudenthal_pequiv (succ n) (succ (succ n)) (add_mul_le_mul_add n 1 1) _) ⬝* _, reflexivity } end definition loopn_EMadd1_pmap' {G : AbGroup} {X : Type*} {n : ℕ} (e : Ω[succ n] X ≃* G) (r : Πp q, e (p ⬝ q) = e p * e q) [H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : Ω→[succ n](EMadd1_pmap n e r) ∘* loopn_EMadd1 G n ~* e⁻¹ᵉ* := begin revert X e r H1 H2, induction n with n IH: intro X e r H1 H2, { apply loop_EM1_pmap }, refine pwhisker_left _ !loopn_EMadd1_succ ⬝* _, refine !passoc⁻¹* ⬝* _, refine pwhisker_right _ !loopn_succ_in_inv_natural ⬝* _, refine !passoc ⬝* _, refine pwhisker_left _ (!passoc⁻¹* ⬝* pwhisker_right _ (!apn_pcompose⁻¹* ⬝* apn_phomotopy _ !loop_EMadd1_pmap) ⬝* !IH ⬝* !pinv_trans_pinv_left) ⬝* _, apply pinv_pcompose_cancel_left end definition EMadd1_pequiv' {G : AbGroup} {X : Type*} (n : ℕ) (e : Ω[succ n] X ≃* G) (r : Π(p q : Ω[succ n] X), e (p ⬝ q) = e p * e q) [H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n ≃* X := begin apply pequiv_of_pmap (EMadd1_pmap n e r), have is_conn 0 (EMadd1 G n), from is_conn_of_le _ (zero_le_of_nat n), have is_trunc (n.+1) (EMadd1 G n), from !is_trunc_EMadd1, refine whitehead_principle_pointed (n.+1) _ _, intro k, apply @nat.lt_by_cases k (succ n): intro H, { apply @is_equiv_of_is_contr, do 2 exact trivial_homotopy_group_of_is_conn _ (le_of_lt_succ H)}, { cases H, esimp, apply is_equiv_trunc_functor, esimp, apply is_equiv.homotopy_closed, rotate 1, { symmetry, exact phomotopy_pinv_right_of_phomotopy (loopn_EMadd1_pmap' _ _) }, apply is_equiv_compose (e⁻¹ᵉ*)}, { apply @is_equiv_of_is_contr, do 2 exact trivial_homotopy_group_of_is_trunc _ H} end definition EMadd1_pequiv {G : AbGroup} {X : Type*} (n : ℕ) (e : πg[n+1] X ≃g G) [H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n ≃* X := begin have is_set (Ω[succ n] X), from !is_set_loopn, apply EMadd1_pequiv' n ((ptrunc_pequiv _ _)⁻¹ᵉ* ⬝e* pequiv_of_isomorphism e), intro p q, esimp, exact to_respect_mul e (tr p) (tr q) end definition EMadd1_pequiv_succ {G : AbGroup} {X : Type*} (n : ℕ) (e : πag[n+2] X ≃g G) [H1 : is_conn (n.+1) X] [H2 : is_trunc (n.+2) X] : EMadd1 G (succ n) ≃* X := EMadd1_pequiv (succ n) e definition ghomotopy_group_EMadd1 (n : ℕ) : πg[n+1] (EMadd1 G n) ≃g G := begin change π₁ (Ω[n] (EMadd1 G n)) ≃g G, refine homotopy_group_isomorphism_of_pequiv 0 (loopn_EMadd1_pequiv_EM1 G n)⁻¹ᵉ* ⬝g _, apply fundamental_group_EM1, end definition EMadd1_pequiv_type (X : Type*) (n : ℕ) [is_conn (n+1) X] [is_trunc (n+1+1) X] : EMadd1 (πag[n+2] X) (succ n) ≃* X := EMadd1_pequiv_succ n !isomorphism.refl /- K(G, n) -/ definition EM (G : AbGroup) : ℕ → Type* | 0 := G | (k+1) := EMadd1 G k namespace ops abbreviation K := @EM end ops open ops definition homotopy_group_EM (n : ℕ) : π[n] (EM G n) ≃* G := begin cases n with n, { rexact ptrunc_pequiv 0 G }, { exact pequiv_of_isomorphism (ghomotopy_group_EMadd1 G n)} end definition ghomotopy_group_EM (n : ℕ) : πg[n+1] (EM G (n+1)) ≃g G := ghomotopy_group_EMadd1 G n definition is_conn_EM [instance] (n : ℕ) : is_conn (n.-1) (EM G n) := begin cases n with n, { apply is_conn_minus_one, apply tr, unfold [EM], exact 1}, { apply is_conn_EMadd1} end definition is_conn_EM_succ [instance] (n : ℕ) : is_conn n (EM G (succ n)) := is_conn_EM G (succ n) definition is_trunc_EM [instance] (n : ℕ) : is_trunc n (EM G n) := begin cases n with n, { unfold [EM], apply semigroup.is_set_carrier}, { apply is_trunc_EMadd1} end definition loop_EM (n : ℕ) : Ω (K G (succ n)) ≃* K G n := begin cases n with n, { refine _ ⬝e* pequiv_of_isomorphism (fundamental_group_EM1 G), symmetry, apply ptrunc_pequiv }, { exact !loop_EMadd1⁻¹ᵉ* } end open circle int definition EM_pequiv_circle : K agℤ 1 ≃* S¹* := EM1_pequiv fundamental_group_of_circle⁻¹ᵍ /- Functorial action of Eilenberg-Maclane spaces -/ definition EM1_functor [constructor] {G H : Group} (φ : G →g H) : EM1 G →* EM1 H := begin fconstructor, { intro g, induction g, { exact base }, { exact pth (φ g) }, { exact ap pth (to_respect_mul φ g h) ⬝ resp_mul (φ g) (φ h) }}, { reflexivity } end definition EMadd1_functor [constructor] {G H : AbGroup} (φ : G →g H) (n : ℕ) : EMadd1 G n →* EMadd1 H n := begin induction n with n ψ, { exact EM1_functor φ }, { apply ptrunc_functor, apply psusp_functor, exact ψ } end definition EM_functor [unfold 4] {G H : AbGroup} (φ : G →g H) (n : ℕ) : K G n →* K H n := begin cases n with n, { exact pmap_of_homomorphism φ }, { exact EMadd1_functor φ n } end /- Equivalence of Groups and pointed connected 1-truncated types -/ definition ptruncconntype10_pequiv (X Y : 1-Type*[0]) (e : π₁ X ≃g π₁ Y) : X ≃* Y := (EM1_pequiv !isomorphism.refl)⁻¹ᵉ* ⬝e* EM1_pequiv e definition EM1_pequiv_ptruncconntype10 (X : 1-Type*[0]) : EM1 (π₁ X) ≃* X := EM1_pequiv_type X definition Group_equiv_ptruncconntype10 [constructor] : Group ≃ 1-Type*[0] := equiv.MK (λG, ptruncconntype.mk (EM1 G) _ pt !is_conn_EM1) (λX, π₁ X) begin intro X, apply ptruncconntype_eq, esimp, exact EM1_pequiv_type X end begin intro G, apply eq_of_isomorphism, apply fundamental_group_EM1 end /- Equivalence of AbGroups and pointed n-connected (n+1)-truncated types (n ≥ 1) -/ open trunc_index definition ptruncconntype_pequiv : Π(n : ℕ) (X Y : (n.+1)-Type*[n]) (e : πg[n+1] X ≃g πg[n+1] Y), X ≃* Y | 0 X Y e := ptruncconntype10_pequiv X Y e | (succ n) X Y e := begin refine (EMadd1_pequiv_succ n _)⁻¹ᵉ* ⬝e* EMadd1_pequiv_succ n !isomorphism.refl, exact e end definition EM1_pequiv_ptruncconntype (n : ℕ) (X : (n+1+1)-Type*[n+1]) : EMadd1 (πag[n+2] X) (succ n) ≃* X := EMadd1_pequiv_type X n definition AbGroup_equiv_ptruncconntype' [constructor] (n : ℕ) : AbGroup ≃ (n + 1 + 1)-Type*[n+1] := equiv.MK (λG, ptruncconntype.mk (EMadd1 G (n+1)) _ pt _) (λX, πag[n+2] X) begin intro X, apply ptruncconntype_eq, apply EMadd1_pequiv_type end begin intro G, apply AbGroup_eq_of_isomorphism, exact ghomotopy_group_EMadd1 G (n+1) end definition AbGroup_equiv_ptruncconntype [constructor] (n : ℕ) : AbGroup ≃ (n.+2)-Type*[n.+1] := AbGroup_equiv_ptruncconntype' n end EM