open nat inductive type : Type := | Nat : type | Func : type → type → type open type section var variable {var : type → Type} inductive term : type → Type := | Var : ∀ {t}, var t → term t | Const : nat → term Nat | Plus : term Nat → term Nat → term Nat | Abs : ∀ {dom ran}, (var dom → term ran) → term (Func dom ran) | App : ∀ {dom ran}, term (Func dom ran) → term dom → term ran | Let : ∀ {t1 t2}, term t1 → (var t1 → term t2) → term t2 end var open term definition Term t := Π (var : type → Type), @term var t open unit definition count_vars : Π {t : type}, @term (λ x, unit) t -> nat | count_vars (Var _) := 1 | count_vars (Const _) := 0 | count_vars (Plus e1 e2) := count_vars e1 + count_vars e2 | count_vars (Abs e1) := count_vars (e1 star) | count_vars (App e1 e2) := count_vars e1 + count_vars e2 | count_vars (Let e1 e2) := count_vars e1 + count_vars (e2 star) definition var (t : type) : @term (λ x, unit) t := Var star example : count_vars (App (App (var (Func Nat (Func Nat Nat))) (var Nat)) (var Nat)) = 3 := rfl definition count_vars2 : Π {t : type}, @term (λ x, unit) t -> nat | _ (Var _) := 1 | _ (Const _) := 0 | _ (Plus e1 e2) := count_vars2 e1 + count_vars2 e2 | _ (Abs e1) := count_vars2 (e1 star) | _ (App e1 e2) := count_vars2 e1 + count_vars2 e2 | _ (Let e1 e2) := count_vars2 e1 + count_vars2 (e2 star)