/- Copyright (c) 2015 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Robert Y. Lewis The intermediate value theorem. -/ import .real_limit open real analysis set classical noncomputable theory private definition inter_sup (a b : ℝ) (f : ℝ → ℝ) := sup {x | x < b ∧ f x < 0} section parameters {f : ℝ → ℝ} (Hf : continuous f) {a b : ℝ} (Hab : a < b) (Ha : f a < 0) (Hb : f b > 0) include Hf Ha Hb Hab private theorem Hinh : ∃ x, x ∈ {x | x < b ∧ f x < 0} := exists.intro a (and.intro Hab Ha) private theorem Hmem : ∀ x, x ∈ {x | x < b ∧ f x < 0} → x ≤ b := λ x Hx, le_of_lt (and.left Hx) private theorem Hsupleb : inter_sup a b f ≤ b := sup_le (Hinh) Hmem local notation 2 := of_num 1 + of_num 1 private theorem ex_delta_lt {x : ℝ} (Hx : f x < 0) (Hxb : x < b) : ∃ δ : ℝ, δ > 0 ∧ x + δ < b ∧ f (x + δ) < 0 := begin let Hcont := neg_on_nbhd_of_cts_of_neg Hf Hx, cases Hcont with δ Hδ, {cases em (x + δ < b) with Haδ Haδ, existsi δ / 2, split, {exact div_pos_of_pos_of_pos (and.left Hδ) two_pos}, split, {apply lt.trans, apply add_lt_add_left, exact div_two_lt_of_pos (and.left Hδ), exact Haδ}, {apply and.right Hδ, krewrite [abs_sub, sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg, abs_of_pos (div_pos_of_pos_of_pos (and.left Hδ) two_pos)], exact div_two_lt_of_pos (and.left Hδ)}, existsi (b - x) / 2, split, {apply div_pos_of_pos_of_pos, exact sub_pos_of_lt Hxb, exact two_pos}, split, {apply add_midpoint Hxb}, {apply and.right Hδ, krewrite [abs_sub, sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg, abs_of_pos (div_pos_of_pos_of_pos (sub_pos_of_lt Hxb) two_pos)], apply lt_of_lt_of_le, apply div_two_lt_of_pos (sub_pos_of_lt Hxb), apply sub_left_le_of_le_add, apply le_of_not_gt Haδ}} end private lemma sup_near_b {δ : ℝ} (Hpos : 0 < δ) (Hgeb : inter_sup a b f + δ / 2 ≥ b) : abs (inter_sup a b f - b) < δ := begin apply abs_lt_of_lt_of_neg_lt, apply sub_lt_left_of_lt_add, apply lt_of_le_of_lt, apply Hsupleb, apply lt_add_of_pos_right Hpos, rewrite neg_sub, apply sub_lt_left_of_lt_add, apply lt_of_le_of_lt, apply Hgeb, apply add_lt_add_left, apply div_two_lt_of_pos Hpos end private lemma delta_of_lt (Hflt : f (inter_sup a b f) < 0) : ∃ δ : ℝ, δ > 0 ∧ inter_sup a b f + δ < b ∧ f (inter_sup a b f + δ) < 0 := if Hlt : inter_sup a b f < b then ex_delta_lt Hflt Hlt else begin let Heq := eq_of_le_of_ge Hsupleb (le_of_not_gt Hlt), apply absurd Hflt, apply not_lt_of_ge, apply le_of_lt, rewrite Heq, exact Hb end private theorem sup_fn_interval_aux1 : f (inter_sup a b f) ≥ 0 := have ¬ f (inter_sup a b f) < 0, from (suppose f (inter_sup a b f) < 0, obtain δ Hδ, from delta_of_lt this, have inter_sup a b f + δ ∈ {x | x < b ∧ f x < 0}, from and.intro (and.left (and.right Hδ)) (and.right (and.right Hδ)), have ¬ inter_sup a b f < inter_sup a b f + δ, from not_lt_of_ge (le_sup this Hmem), show false, from this (lt_add_of_pos_right (and.left Hδ))), le_of_not_gt this private theorem sup_fn_interval_aux2 : f (inter_sup a b f) ≤ 0 := have ¬ f (inter_sup a b f) > 0, from (assume Hfsup : f (inter_sup a b f) > 0, obtain δ Hδ, from pos_on_nbhd_of_cts_of_pos Hf Hfsup, have ∀ x, x ∈ {x | x < b ∧ f x < 0} → x ≤ inter_sup a b f - δ / 2, from (take x, assume Hxset : x ∈ {x | x < b ∧ f x < 0}, have ¬ x > inter_sup a b f - δ / 2, from (assume Hngt, have Habs : abs (x - inter_sup a b f) < δ, begin rewrite abs_sub, apply abs_lt_of_lt_of_neg_lt, apply sub_lt_of_sub_lt, apply gt.trans, exact Hngt, apply sub_lt_sub_left, exact div_two_lt_of_pos (and.left Hδ), rewrite neg_sub, apply lt_of_le_of_lt, rotate 1, apply and.left Hδ, apply sub_nonpos_of_le, apply le_sup, exact Hxset, exact Hmem end, have f x > 0, from and.right Hδ x Habs, show false, from (not_lt_of_gt this) (and.right Hxset)), le_of_not_gt this), have Hle : inter_sup a b f ≤ inter_sup a b f - δ / 2, from sup_le Hinh this, show false, from not_le_of_gt (sub_lt_of_pos _ (div_pos_of_pos_of_pos (and.left Hδ) (two_pos))) Hle), le_of_not_gt this private theorem sup_fn_interval : f (inter_sup a b f) = 0 := eq_of_le_of_ge sup_fn_interval_aux2 sup_fn_interval_aux1 private theorem intermediate_value_incr_aux2 : ∃ δ : ℝ, δ > 0 ∧ a + δ < b ∧ f (a + δ) < 0 := begin let Hcont := neg_on_nbhd_of_cts_of_neg Hf Ha, cases Hcont with δ Hδ, {cases em (a + δ < b) with Haδ Haδ, existsi δ / 2, split, {exact div_pos_of_pos_of_pos (and.left Hδ) two_pos}, split, {apply lt.trans, apply add_lt_add_left, exact div_two_lt_of_pos (and.left Hδ), exact Haδ}, {apply and.right Hδ, krewrite [abs_sub, sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg, abs_of_pos (div_pos_of_pos_of_pos (and.left Hδ) two_pos)], exact div_two_lt_of_pos (and.left Hδ)}, existsi (b - a) / 2, split, {apply div_pos_of_pos_of_pos, exact sub_pos_of_lt Hab, exact two_pos}, split, {apply add_midpoint Hab}, {apply and.right Hδ, krewrite [abs_sub, sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg, abs_of_pos (div_pos_of_pos_of_pos (sub_pos_of_lt Hab) two_pos)], apply lt_of_lt_of_le, apply div_two_lt_of_pos (sub_pos_of_lt Hab), apply sub_left_le_of_le_add, apply le_of_not_gt Haδ}} end theorem intermediate_value_incr_zero : ∃ c, a < c ∧ c < b ∧ f c = 0 := begin existsi inter_sup a b f, split, {cases intermediate_value_incr_aux2 with δ Hδ, apply lt_of_lt_of_le, apply lt_add_of_pos_right, exact and.left Hδ, apply le_sup, exact and.right Hδ, intro x Hx, apply le_of_lt, exact and.left Hx}, split, {cases pos_on_nbhd_of_cts_of_pos Hf Hb with δ Hδ, apply lt_of_le_of_lt, rotate 1, apply sub_lt_of_pos, exact and.left Hδ, rotate_right 1, apply sup_le, exact exists.intro a (and.intro Hab Ha), intro x Hx, apply le_of_not_gt, intro Hxgt, have Hxgt' : b - x < δ, from sub_lt_of_sub_lt Hxgt, krewrite [-(abs_of_pos (sub_pos_of_lt (and.left Hx))) at Hxgt', abs_sub at Hxgt'], note Hxgt'' := and.right Hδ _ Hxgt', exact not_lt_of_ge (le_of_lt Hxgt'') (and.right Hx)}, {exact sup_fn_interval} end end theorem intermediate_value_decr_zero {f : ℝ → ℝ} (Hf : continuous f) {a b : ℝ} (Hab : a < b) (Ha : f a > 0) (Hb : f b < 0) : ∃ c, a < c ∧ c < b ∧ f c = 0 := begin have Ha' : - f a < 0, from neg_neg_of_pos Ha, have Hb' : - f b > 0, from neg_pos_of_neg Hb, have Hcon : continuous (λ x, - f x), from continuous_neg_of_continuous Hf, let Hiv := intermediate_value_incr_zero Hcon Hab Ha' Hb', cases Hiv with c Hc, existsi c, split, exact and.left Hc, split, exact and.left (and.right Hc), apply eq_zero_of_neg_eq_zero, apply and.right (and.right Hc) end theorem intermediate_value_incr {f : ℝ → ℝ} (Hf : continuous f) {a b : ℝ} (Hab : a < b) {v : ℝ} (Hav : f a < v) (Hbv : f b > v) : ∃ c, a < c ∧ c < b ∧ f c = v := have Hav' : f a - v < 0, from sub_neg_of_lt Hav, have Hbv' : f b - v > 0, from sub_pos_of_lt Hbv, have Hcon : continuous (λ x, f x - v), from continuous_offset_of_continuous Hf _, have Hiv : ∃ c, a < c ∧ c < b ∧ f c - v = 0, from intermediate_value_incr_zero Hcon Hab Hav' Hbv', obtain c Hc, from Hiv, exists.intro c (and.intro (and.left Hc) (and.intro (and.left (and.right Hc)) (eq_of_sub_eq_zero (and.right (and.right Hc))))) theorem intermediate_value_decr {f : ℝ → ℝ} (Hf : continuous f) {a b : ℝ} (Hab : a < b) {v : ℝ} (Hav : f a > v) (Hbv : f b < v) : ∃ c, a < c ∧ c < b ∧ f c = v := have Hav' : f a - v > 0, from sub_pos_of_lt Hav, have Hbv' : f b - v < 0, from sub_neg_of_lt Hbv, have Hcon : continuous (λ x, f x - v), from continuous_offset_of_continuous Hf _, have Hiv : ∃ c, a < c ∧ c < b ∧ f c - v = 0, from intermediate_value_decr_zero Hcon Hab Hav' Hbv', obtain c Hc, from Hiv, exists.intro c (and.intro (and.left Hc) (and.intro (and.left (and.right Hc)) (eq_of_sub_eq_zero (and.right (and.right Hc)))))