/* Copyright (c) 2013 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #pragma once #include #include #include #include #include #include #include "util/thread.h" #include "util/lua.h" #include "util/rc.h" #include "util/name.h" #include "util/hash.h" #include "util/buffer.h" #include "util/list_fn.h" #include "util/optional.h" #include "util/serializer.h" #include "util/sexpr/format.h" #include "kernel/level.h" namespace lean { class value; /* ======================================= Expressions expr ::= Var idx | Constant name | Value value | App [expr] | Pair expr expr expr | Proj bool expr The Boolean flag indicates whether is the first/second projection | Lambda name expr expr | Pi name expr expr | Sigma name expr expr | Type universe | Let name expr expr expr | HEq expr expr Heterogeneous equality | Metavar name local_context local_context ::= [local_entry] local_entry ::= lift idx idx | inst idx expr TODO(Leo): match expressions. The main API is divided in the following sections - Testers - Constructors - Accessors - Miscellaneous ======================================= */ class expr; enum class expr_kind { Value, Var, Constant, App, Pair, Proj, Lambda, Pi, Sigma, Type, Let, HEq, MetaVar }; class local_entry; /** \brief A metavariable local context is just a list of local_entries. \see local_entry */ typedef list local_context; /** \brief Base class used to represent expressions. In principle, the expr_cell class and subclasses should be located in the .cpp file. However, this is performance critical code, and we want to be able to have inline definitions. */ class expr_cell { protected: unsigned short m_kind; // The bits of the following field mean: // 0 - term is maximally shared // 1 - term is closed // 2 - term contains metavariables // 3-4 - term is an arrow (0 - not initialized, 1 - is arrow, 2 - is not arrow) atomic_ushort m_flags; unsigned m_hash; // hash based on the structure of the expression (this is a good hash for structural equality) unsigned m_hash_alloc; // hash based on 'time' of allocation (this is a good hash for pointer-based equality) MK_LEAN_RC(); // Declare m_rc counter void dealloc(); bool max_shared() const { return (m_flags & 1) != 0; } void set_max_shared() { m_flags |= 1; } friend class max_sharing_fn; bool is_closed() const { return (m_flags & 2) != 0; } void set_closed() { m_flags |= 2; } optional is_arrow() const; void set_is_arrow(bool flag); friend bool is_arrow(expr const & e); friend class has_free_var_fn; static void dec_ref(expr & c, buffer & todelete); static void dec_ref(optional & c, buffer & todelete); public: expr_cell(expr_kind k, unsigned h, bool has_mv); expr_kind kind() const { return static_cast(m_kind); } unsigned hash() const { return m_hash; } unsigned hash_alloc() const { return m_hash_alloc; } bool has_metavar() const { return (m_flags & 4) != 0; } }; /** \brief Exprs for encoding formulas/expressions, types and proofs. */ class expr { private: expr_cell * m_ptr; explicit expr(expr_cell * ptr):m_ptr(ptr) { if (m_ptr) m_ptr->inc_ref(); } friend class expr_cell; expr_cell * steal_ptr() { expr_cell * r = m_ptr; m_ptr = nullptr; return r; } friend class optional; public: /** \brief The default constructor creates a reference to a "dummy" expression. The actual "dummy" expression is not relevant, and no procedure should rely on the kind of expression used. We have a default constructor because some collections only work with types that have a default constructor. */ expr(); expr(expr const & s):m_ptr(s.m_ptr) { if (m_ptr) m_ptr->inc_ref(); } expr(expr && s):m_ptr(s.m_ptr) { s.m_ptr = nullptr; } ~expr() { if (m_ptr) m_ptr->dec_ref(); } friend void swap(expr & a, expr & b) { std::swap(a.m_ptr, b.m_ptr); } expr & operator=(expr const & s) { LEAN_COPY_REF(s); } expr & operator=(expr && s) { LEAN_MOVE_REF(s); } expr_kind kind() const { return m_ptr->kind(); } unsigned hash() const { return m_ptr ? m_ptr->hash() : 23; } unsigned hash_alloc() const { return m_ptr ? m_ptr->hash_alloc() : 23; } bool has_metavar() const { return m_ptr->has_metavar(); } expr_cell * raw() const { return m_ptr; } friend expr mk_var(unsigned idx); friend expr mk_constant(name const & n, optional const & t); friend expr mk_value(value & v); friend expr mk_pair(expr const & f, expr const & s, expr const & t); friend expr mk_proj(bool f, expr const & t); friend expr mk_app(unsigned num_args, expr const * args); friend expr mk_lambda(name const & n, expr const & t, expr const & e); friend expr mk_pi(name const & n, expr const & t, expr const & e); friend expr mk_sigma(name const & n, expr const & t, expr const & e); friend expr mk_type(level const & l); friend expr mk_let(name const & n, optional const & t, expr const & v, expr const & e); friend expr mk_heq(expr const & lhs, expr const & rhs); friend expr mk_metavar(name const & n, local_context const & ctx); friend bool is_eqp(expr const & a, expr const & b) { return a.m_ptr == b.m_ptr; } // Overloaded operator() can be used to create applications expr operator()(expr const & a1) const; expr operator()(expr const & a1, expr const & a2) const; expr operator()(expr const & a1, expr const & a2, expr const & a3) const; expr operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4) const; expr operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5) const; expr operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5, expr const & a6) const; expr operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5, expr const & a6, expr const & a7) const; expr operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5, expr const & a6, expr const & a7, expr const & a8) const; }; // ======================================= // Structural equality bool operator==(expr const & a, expr const & b); inline bool operator!=(expr const & a, expr const & b) { return !operator==(a, b); } // ======================================= SPECIALIZE_OPTIONAL_FOR_SMART_PTR(expr) inline optional none_expr() { return optional(); } inline optional some_expr(expr const & e) { return optional(e); } inline optional some_expr(expr && e) { return optional(std::forward(e)); } inline bool is_eqp(optional const & a, optional const & b) { return static_cast(a) == static_cast(b) && (!a || is_eqp(*a, *b)); } // ======================================= // Expr (internal) Representation /** \brief Free variables. They are encoded using de Bruijn's indices. */ class expr_var : public expr_cell { unsigned m_vidx; // de Bruijn index public: expr_var(unsigned idx); unsigned get_vidx() const { return m_vidx; } }; /** \brief Constants. */ class expr_const : public expr_cell { name m_name; optional m_type; // Remark: we do *not* perform destructive updates on m_type // This field is used to efficiently implement the tactic framework friend class expr_cell; void dealloc(buffer & to_delete); public: expr_const(name const & n, optional const & type); name const & get_name() const { return m_name; } optional const & get_type() const { return m_type; } }; /** \brief Function Applications */ class expr_app : public expr_cell { unsigned m_depth; unsigned m_num_args; expr m_args[0]; friend expr mk_app(unsigned num_args, expr const * args); friend expr_cell; void dealloc(buffer & todelete); friend unsigned get_depth(expr const & e); public: expr_app(unsigned size, bool has_mv); unsigned get_num_args() const { return m_num_args; } expr const & get_arg(unsigned idx) const { lean_assert(idx < m_num_args); return m_args[idx]; } expr const * begin_args() const { return m_args; } expr const * end_args() const { return m_args + m_num_args; } }; /** \brief dependent pairs */ class expr_dep_pair : public expr_cell { expr m_first; expr m_second; expr m_type; unsigned m_depth; friend expr_cell; friend expr mk_pair(expr const & f, expr const & s, expr const & t); void dealloc(buffer & todelete); friend unsigned get_depth(expr const & e); public: expr_dep_pair(expr const & f, expr const & s, expr const & t); expr const & get_first() const { return m_first; } expr const & get_second() const { return m_second; } expr const & get_type() const { return m_type; } }; /** \brief dependent pair projection */ class expr_proj : public expr_cell { bool m_first; // first/second projection unsigned m_depth; expr m_expr; friend expr_cell; friend expr mk_proj(unsigned idx, expr const & t); void dealloc(buffer & todelete); friend unsigned get_depth(expr const & e); public: expr_proj(bool first, expr const & e); bool first() const { return m_first; } bool second() const { return !m_first; } expr const & get_arg() const { return m_expr; } }; /** \brief Super class for lambda abstraction and pi (functional spaces). */ class expr_abstraction : public expr_cell { unsigned m_depth; name m_name; expr m_domain; expr m_body; friend class expr_cell; void dealloc(buffer & todelete); friend unsigned get_depth(expr const & e); public: expr_abstraction(expr_kind k, name const & n, expr const & t, expr const & e); name const & get_name() const { return m_name; } expr const & get_domain() const { return m_domain; } expr const & get_body() const { return m_body; } }; /** \brief Lambda abstractions */ class expr_lambda : public expr_abstraction { public: expr_lambda(name const & n, expr const & t, expr const & e); }; /** \brief (dependent) Functional spaces */ class expr_pi : public expr_abstraction { public: expr_pi(name const & n, expr const & t, expr const & e); }; /** \brief Sigma types (aka the type of dependent pairs) */ class expr_sigma : public expr_abstraction { public: expr_sigma(name const & n, expr const & t, expr const & e); }; /** \brief Let expressions */ class expr_let : public expr_cell { unsigned m_depth; name m_name; optional m_type; expr m_value; expr m_body; friend class expr_cell; void dealloc(buffer & todelete); friend unsigned get_depth(expr const & e); public: expr_let(name const & n, optional const & t, expr const & v, expr const & b); ~expr_let(); name const & get_name() const { return m_name; } optional const & get_type() const { return m_type; } expr const & get_value() const { return m_value; } expr const & get_body() const { return m_body; } }; /** \brief Type */ class expr_type : public expr_cell { level m_level; public: expr_type(level const & l); ~expr_type(); level const & get_level() const { return m_level; } }; /** \brief Base class for semantic attachment cells. */ class value { void dealloc() { delete this; } MK_LEAN_RC(); protected: /** \brief Auxiliary method used for implementing a total order on semantic attachments. It is invoked by operator<, and it is only invoked when get_name() == other.get_name() */ virtual bool lt(value const &) const { return false; } public: value():m_rc(0) {} virtual ~value() {} virtual expr get_type() const = 0; virtual name get_name() const = 0; virtual name get_unicode_name() const; virtual optional normalize(unsigned num_args, expr const * args) const; virtual bool operator==(value const & other) const; bool operator<(value const & other) const; virtual void display(std::ostream & out) const; virtual format pp() const; virtual format pp(bool unicode, bool coercion) const; virtual bool is_atomic_pp(bool unicode, bool coercion) const = 0; virtual int push_lua(lua_State * L) const; virtual unsigned hash() const; virtual void write(serializer & s) const = 0; typedef std::function reader; static void register_deserializer(std::string const & k, reader rd); struct register_deserializer_fn { register_deserializer_fn(std::string const & k, value::reader rd) { value::register_deserializer(k, rd); } }; }; /** \brief Semantic attachments */ class expr_value : public expr_cell { value & m_val; friend expr copy(expr const & a); public: expr_value(value & v); ~expr_value(); value const & get_value() const { return m_val; } }; /** \brief Heterogeneous equality */ class expr_heq : public expr_cell { expr m_lhs; expr m_rhs; unsigned m_depth; friend expr_cell; friend expr mk_heq(expr const & lhs, expr const & rhs); void dealloc(buffer & todelete); friend unsigned get_depth(expr const & e); public: expr_heq(expr const & lhs, expr const & rhs); expr const & get_lhs() const { return m_lhs; } expr const & get_rhs() const { return m_rhs; } }; /** \see local_entry */ enum class local_entry_kind { Lift, Inst }; /** \brief An entry in a metavariable context. It represents objects of the form: | Lift s n | Inst s v where \c s and \c n are unsigned integers, and \c v is an expression The meaning of Lift s n is: lift the free variables greater than or equal to \c s by \c n. The meaning of Inst s v is: instantiate free variable \c s with the expression \c v, and lower free variables greater than \c s. The metavariable context records operations that must be applied whenever we substitute a metavariable with an actual expression. For example, let ?M be a metavariable with context [ Inst 0 a, Lift 1 2 ] Now, assume we want to instantiate \c ?M with f #0 (g #2). Then, we apply the metavariable entries from right to left. Thus, first we apply (Lift 1 2) and obtain the term f #0 (g #4) Then, we apply (Inst 0 a) and produce f a (g #3) */ class local_entry { local_entry_kind m_kind; unsigned m_s; unsigned m_n; optional m_v; local_entry(unsigned s, unsigned n); local_entry(unsigned s, expr const & v); public: ~local_entry(); friend local_entry mk_lift(unsigned s, unsigned n); friend local_entry mk_inst(unsigned s, expr const & v); local_entry_kind kind() const { return m_kind; } bool is_inst() const { return kind() == local_entry_kind::Inst; } bool is_lift() const { return kind() == local_entry_kind::Lift; } unsigned s() const { return m_s; } unsigned n() const { lean_assert(is_lift()); return m_n; } bool operator==(local_entry const & e) const; bool operator!=(local_entry const & e) const { return !operator==(e); } expr const & v() const { lean_assert(is_inst()); return *m_v; } }; inline local_entry mk_lift(unsigned s, unsigned n) { return local_entry(s, n); } inline local_entry mk_inst(unsigned s, expr const & v) { return local_entry(s, v); } /** \brief Metavariables */ class expr_metavar : public expr_cell { name m_name; local_context m_lctx; public: expr_metavar(name const & n, local_context const & lctx); ~expr_metavar(); name const & get_name() const { return m_name; } local_context const & get_lctx() const { return m_lctx; } }; // ======================================= // ======================================= // Testers inline bool is_var(expr_cell * e) { return e->kind() == expr_kind::Var; } inline bool is_constant(expr_cell * e) { return e->kind() == expr_kind::Constant; } inline bool is_value(expr_cell * e) { return e->kind() == expr_kind::Value; } inline bool is_dep_pair(expr_cell * e) { return e->kind() == expr_kind::Pair; } inline bool is_proj(expr_cell * e) { return e->kind() == expr_kind::Proj; } inline bool is_app(expr_cell * e) { return e->kind() == expr_kind::App; } inline bool is_lambda(expr_cell * e) { return e->kind() == expr_kind::Lambda; } inline bool is_pi(expr_cell * e) { return e->kind() == expr_kind::Pi; } inline bool is_sigma(expr_cell * e) { return e->kind() == expr_kind::Sigma; } inline bool is_type(expr_cell * e) { return e->kind() == expr_kind::Type; } inline bool is_let(expr_cell * e) { return e->kind() == expr_kind::Let; } inline bool is_heq(expr_cell * e) { return e->kind() == expr_kind::HEq; } inline bool is_metavar(expr_cell * e) { return e->kind() == expr_kind::MetaVar; } inline bool is_abstraction(expr_cell * e) { return is_lambda(e) || is_pi(e) || is_sigma(e); } inline bool is_var(expr const & e) { return e.kind() == expr_kind::Var; } inline bool is_constant(expr const & e) { return e.kind() == expr_kind::Constant; } inline bool is_value(expr const & e) { return e.kind() == expr_kind::Value; } inline bool is_dep_pair(expr const & e) { return e.kind() == expr_kind::Pair; } inline bool is_proj(expr const & e) { return e.kind() == expr_kind::Proj; } inline bool is_app(expr const & e) { return e.kind() == expr_kind::App; } inline bool is_lambda(expr const & e) { return e.kind() == expr_kind::Lambda; } inline bool is_pi(expr const & e) { return e.kind() == expr_kind::Pi; } bool is_arrow(expr const & e); bool is_cartesian(expr const & e); inline bool is_sigma(expr const & e) { return e.kind() == expr_kind::Sigma; } inline bool is_type(expr const & e) { return e.kind() == expr_kind::Type; } inline bool is_let(expr const & e) { return e.kind() == expr_kind::Let; } inline bool is_heq(expr const & e) { return e.kind() == expr_kind::HEq; } inline bool is_metavar(expr const & e) { return e.kind() == expr_kind::MetaVar; } inline bool is_abstraction(expr const & e) { return is_lambda(e) || is_pi(e) || is_sigma(e); } // ======================================= // ======================================= // Constructors inline expr mk_var(unsigned idx) { return expr(new expr_var(idx)); } inline expr Var(unsigned idx) { return mk_var(idx); } inline expr mk_constant(name const & n, optional const & t) { return expr(new expr_const(n, t)); } inline expr mk_constant(name const & n, expr const & t) { return mk_constant(n, some_expr(t)); } inline expr mk_constant(name const & n) { return mk_constant(n, none_expr()); } inline expr Const(name const & n) { return mk_constant(n); } inline expr mk_value(value & v) { return expr(new expr_value(v)); } inline expr to_expr(value & v) { return mk_value(v); } inline expr mk_pair(expr const & f, expr const & s, expr const & t) { return expr(new expr_dep_pair(f, s, t)); } inline expr mk_proj(bool f, expr const & e) { return expr(new expr_proj(f, e)); } inline expr mk_proj1(expr const & e) { return mk_proj(true, e); } inline expr mk_proj2(expr const & e) { return mk_proj(false, e); } expr mk_app(unsigned num_args, expr const * args); inline expr mk_app(std::initializer_list const & l) { return mk_app(l.size(), l.begin()); } template expr mk_app(T const & args) { return mk_app(args.size(), args.data()); } inline expr mk_app(expr const & e1, expr const & e2) { return mk_app({e1, e2}); } inline expr mk_app(expr const & e1, expr const & e2, expr const & e3) { return mk_app({e1, e2, e3}); } inline expr mk_app(expr const & e1, expr const & e2, expr const & e3, expr const & e4) { return mk_app({e1, e2, e3, e4}); } inline expr mk_app(expr const & e1, expr const & e2, expr const & e3, expr const & e4, expr const & e5) { return mk_app({e1, e2, e3, e4, e5}); } inline expr mk_lambda(name const & n, expr const & t, expr const & e) { return expr(new expr_lambda(n, t, e)); } inline expr mk_pi(name const & n, expr const & t, expr const & e) { return expr(new expr_pi(n, t, e)); } inline expr mk_sigma(name const & n, expr const & t, expr const & e) { return expr(new expr_sigma(n, t, e)); } inline bool is_default_arrow_var_name(name const & n) { return n == "a"; } inline expr mk_arrow(expr const & t, expr const & e) { return mk_pi(name("a"), t, e); } inline expr mk_cartesian_product(expr const & t, expr const & e) { return mk_sigma(name("a"), t, e); } inline expr operator>>(expr const & t, expr const & e) { return mk_arrow(t, e); } inline expr mk_let(name const & n, optional const & t, expr const & v, expr const & e) { return expr(new expr_let(n, t, v, e)); } inline expr mk_let(name const & n, expr const & t, expr const & v, expr const & e) { return mk_let(n, some_expr(t), v, e); } inline expr mk_let(name const & n, expr const & v, expr const & e) { return mk_let(n, none_expr(), v, e); } inline expr mk_type(level const & l) { return expr(new expr_type(l)); } expr mk_type(); inline expr Type(level const & l) { return mk_type(l); } inline expr Type() { return mk_type(); } inline expr mk_heq(expr const & lhs, expr const & rhs) { return expr(new expr_heq(lhs, rhs)); } inline expr mk_metavar(name const & n, local_context const & ctx = local_context()) { return expr(new expr_metavar(n, ctx)); } inline expr expr::operator()(expr const & a1) const { return mk_app({*this, a1}); } inline expr expr::operator()(expr const & a1, expr const & a2) const { return mk_app({*this, a1, a2}); } inline expr expr::operator()(expr const & a1, expr const & a2, expr const & a3) const { return mk_app({*this, a1, a2, a3}); } inline expr expr::operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4) const { return mk_app({*this, a1, a2, a3, a4}); } inline expr expr::operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5) const { return mk_app({*this, a1, a2, a3, a4, a5}); } inline expr expr::operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5, expr const & a6) const { return mk_app({*this, a1, a2, a3, a4, a5, a6}); } inline expr expr::operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5, expr const & a6, expr const & a7) const { return mk_app({*this, a1, a2, a3, a4, a5, a6, a7}); } inline expr expr::operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5, expr const & a6, expr const & a7, expr const & a8) const { return mk_app({*this, a1, a2, a3, a4, a5, a6, a7, a8}); } // ======================================= // ======================================= // Casting (these functions are only needed for low-level code) inline expr_var * to_var(expr_cell * e) { lean_assert(is_var(e)); return static_cast(e); } inline expr_const * to_constant(expr_cell * e) { lean_assert(is_constant(e)); return static_cast(e); } inline expr_dep_pair * to_pair(expr_cell * e) { lean_assert(is_dep_pair(e)); return static_cast(e); } inline expr_proj * to_proj(expr_cell * e) { lean_assert(is_proj(e)); return static_cast(e); } inline expr_app * to_app(expr_cell * e) { lean_assert(is_app(e)); return static_cast(e); } inline expr_abstraction * to_abstraction(expr_cell * e) { lean_assert(is_abstraction(e)); return static_cast(e); } inline expr_lambda * to_lambda(expr_cell * e) { lean_assert(is_lambda(e)); return static_cast(e); } inline expr_pi * to_pi(expr_cell * e) { lean_assert(is_pi(e)); return static_cast(e); } inline expr_sigma * to_sigma(expr_cell * e) { lean_assert(is_sigma(e)); return static_cast(e); } inline expr_type * to_type(expr_cell * e) { lean_assert(is_type(e)); return static_cast(e); } inline expr_let * to_let(expr_cell * e) { lean_assert(is_let(e)); return static_cast(e); } inline expr_heq * to_heq(expr_cell * e) { lean_assert(is_heq(e)); return static_cast(e); } inline expr_metavar * to_metavar(expr_cell * e) { lean_assert(is_metavar(e)); return static_cast(e); } inline expr_var * to_var(expr const & e) { return to_var(e.raw()); } inline expr_const * to_constant(expr const & e) { return to_constant(e.raw()); } inline expr_dep_pair * to_pair(expr const & e) { return to_pair(e.raw()); } inline expr_proj * to_proj(expr const & e) { return to_proj(e.raw()); } inline expr_app * to_app(expr const & e) { return to_app(e.raw()); } inline expr_abstraction * to_abstraction(expr const & e) { return to_abstraction(e.raw()); } inline expr_lambda * to_lambda(expr const & e) { return to_lambda(e.raw()); } inline expr_pi * to_pi(expr const & e) { return to_pi(e.raw()); } inline expr_sigma * to_sigma(expr const & e) { return to_sigma(e.raw()); } inline expr_let * to_let(expr const & e) { return to_let(e.raw()); } inline expr_type * to_type(expr const & e) { return to_type(e.raw()); } inline expr_heq * to_heq(expr const & e) { return to_heq(e.raw()); } inline expr_metavar * to_metavar(expr const & e) { return to_metavar(e.raw()); } // ======================================= // ======================================= // Accessors inline unsigned get_rc(expr_cell * e) { return e->get_rc(); } inline bool is_shared(expr_cell * e) { return get_rc(e) > 1; } inline unsigned var_idx(expr_cell * e) { return to_var(e)->get_vidx(); } inline bool is_var(expr_cell * e, unsigned i) { return is_var(e) && var_idx(e) == i; } inline name const & const_name(expr_cell * e) { return to_constant(e)->get_name(); } // Remark: the following function should not be exposed in the internal API. inline optional const & const_type(expr_cell * e) { return to_constant(e)->get_type(); } inline expr const & pair_first(expr_cell * e) { return to_pair(e)->get_first(); } inline expr const & pair_second(expr_cell * e) { return to_pair(e)->get_second(); } inline expr const & pair_type(expr_cell * e) { return to_pair(e)->get_type(); } inline bool proj_first(expr_cell * e) { return to_proj(e)->first(); } inline expr const & proj_arg(expr_cell * e) { return to_proj(e)->get_arg(); } inline value const & to_value(expr_cell * e) { lean_assert(is_value(e)); return static_cast(e)->get_value(); } inline unsigned num_args(expr_cell * e) { return to_app(e)->get_num_args(); } inline expr const & arg(expr_cell * e, unsigned idx) { return to_app(e)->get_arg(idx); } inline name const & abst_name(expr_cell * e) { return to_abstraction(e)->get_name(); } inline expr const & abst_domain(expr_cell * e) { return to_abstraction(e)->get_domain(); } inline expr const & abst_body(expr_cell * e) { return to_abstraction(e)->get_body(); } inline level const & ty_level(expr_cell * e) { return to_type(e)->get_level(); } inline name const & let_name(expr_cell * e) { return to_let(e)->get_name(); } inline expr const & let_value(expr_cell * e) { return to_let(e)->get_value(); } inline optional const & let_type(expr_cell * e) { return to_let(e)->get_type(); } inline expr const & let_body(expr_cell * e) { return to_let(e)->get_body(); } inline expr const & heq_lhs(expr_cell * e) { return to_heq(e)->get_lhs(); } inline expr const & heq_rhs(expr_cell * e) { return to_heq(e)->get_rhs(); } inline name const & metavar_name(expr_cell * e) { return to_metavar(e)->get_name(); } inline local_context const & metavar_lctx(expr_cell * e) { return to_metavar(e)->get_lctx(); } /** \brief Return the reference counter of the given expression. */ inline unsigned get_rc(expr const & e) { return e.raw()->get_rc(); } /** \brief Return true iff the reference counter of the given expression is greater than 1. */ inline bool is_shared(expr const & e) { return get_rc(e) > 1; } /** \brief Return the de Bruijn index of the given expression. \pre is_var(e) */ inline unsigned var_idx(expr const & e) { return to_var(e)->get_vidx(); } /** \brief Return true iff the given expression is a variable with de Bruijn index equal to \c i. */ inline bool is_var(expr const & e, unsigned i) { return is_var(e) && var_idx(e) == i; } inline name const & const_name(expr const & e) { return to_constant(e)->get_name(); } // Remark: the following function should not be exposed in the internal API. inline optional const & const_type(expr const & e) { return to_constant(e)->get_type(); } /** \brief Return true iff the given expression is a constant with name \c n. */ inline bool is_constant(expr const & e, name const & n) { return is_constant(e) && const_name(e) == n; } inline value const & to_value(expr const & e) { return to_value(e.raw()); } inline expr const & pair_first(expr const & e) { return to_pair(e)->get_first(); } inline expr const & pair_second(expr const & e) { return to_pair(e)->get_second(); } inline expr const & pair_type(expr const & e) { return to_pair(e)->get_type(); } inline bool proj_first(expr const & e) { return to_proj(e)->first(); } inline expr const & proj_arg(expr const & e) { return to_proj(e)->get_arg(); } inline unsigned num_args(expr const & e) { return to_app(e)->get_num_args(); } inline expr const & arg(expr const & e, unsigned idx) { return to_app(e)->get_arg(idx); } inline expr const * begin_args(expr const & e) { return to_app(e)->begin_args(); } inline expr const * end_args(expr const & e) { return to_app(e)->end_args(); } inline name const & abst_name(expr const & e) { return to_abstraction(e)->get_name(); } inline expr const & abst_domain(expr const & e) { return to_abstraction(e)->get_domain(); } inline expr const & abst_body(expr const & e) { return to_abstraction(e)->get_body(); } inline level const & ty_level(expr const & e) { return to_type(e)->get_level(); } inline name const & let_name(expr const & e) { return to_let(e)->get_name(); } inline optional const & let_type(expr const & e) { return to_let(e)->get_type(); } inline expr const & let_value(expr const & e) { return to_let(e)->get_value(); } inline expr const & let_body(expr const & e) { return to_let(e)->get_body(); } inline expr const & heq_lhs(expr const & e) { return to_heq(e)->get_lhs(); } inline expr const & heq_rhs(expr const & e) { return to_heq(e)->get_rhs(); } inline name const & metavar_name(expr const & e) { return to_metavar(e)->get_name(); } inline local_context const & metavar_lctx(expr const & e) { return to_metavar(e)->get_lctx(); } /** \brief Return the depth of the given expression */ unsigned get_depth(expr const & e); inline bool has_metavar(expr const & e) { return e.has_metavar(); } // ======================================= // ======================================= // Expression+Offset typedef std::pair expr_offset; typedef std::pair expr_cell_offset; // ======================================= // ======================================= // Auxiliary functionals /** \brief Functional object for hashing kernel expressions. */ struct expr_hash { unsigned operator()(expr const & e) const { return e.hash(); } }; /** \brief Functional object for hashing (based on allocation time) kernel expressions. This hash is compatible with pointer equality. \warning This hash is incompatible with structural equality (i.e., std::equal_to) */ struct expr_hash_alloc { unsigned operator()(expr const & e) const { return e.hash_alloc(); } }; /** \brief Functional object for testing pointer equality between kernel expressions. */ struct expr_eqp { bool operator()(expr const & e1, expr const & e2) const { return is_eqp(e1, e2); } }; /** \brief Functional object for hashing kernel expression cells. */ struct expr_cell_hash { unsigned operator()(expr_cell * e) const { return e->hash_alloc(); } }; /** \brief Functional object for testing pointer equality between kernel cell expressions. */ struct expr_cell_eqp { bool operator()(expr_cell * e1, expr_cell * e2) const { return e1 == e2; } }; /** \brief Functional object for hashing a pair (n, k) where n is a kernel expressions, and k is an offset. */ struct expr_offset_hash { unsigned operator()(expr_offset const & p) const { return hash(p.first.hash_alloc(), p.second); } }; /** \brief Functional object for comparing pairs (expression, offset). */ struct expr_offset_eqp { unsigned operator()(expr_offset const & p1, expr_offset const & p2) const { return is_eqp(p1.first, p2.first) && p1.second == p2.second; } }; /** \brief Functional object for hashing a pair (n, k) where n is a kernel cell expressions, and k is an offset. */ struct expr_cell_offset_hash { unsigned operator()(expr_cell_offset const & p) const { return hash(p.first->hash_alloc(), p.second); } }; /** \brief Functional object for comparing pairs (expression cell, offset). */ struct expr_cell_offset_eqp { unsigned operator()(expr_cell_offset const & p1, expr_cell_offset const & p2) const { return p1 == p2; } }; // ======================================= // ======================================= // Miscellaneous /** \brief Wrapper for iterating over application arguments. If \c n is an application, it allows us to write \code for (expr const & arg : app_args(n)) { ... do something with argument } \endcode */ struct args { expr const & m_app; args(expr const & a):m_app(a) { lean_assert(is_app(a)); } expr const * begin() const { return &arg(m_app, 0); } expr const * end() const { return begin() + num_args(m_app); } }; /** \brief Return a shallow copy of \c e */ expr copy(expr const & e); // ======================================= // ======================================= // Update template expr update_app(expr const & e, F f) { static_assert(std::is_same::type, expr>::value, "update_app: return type of f is not expr"); buffer new_args; bool modified = false; for (expr const & a : args(e)) { new_args.push_back(f(a)); if (!is_eqp(a, new_args.back())) modified = true; } if (modified) return mk_app(new_args.size(), new_args.data()); else return e; } template expr update_abst(expr const & e, F f) { static_assert(std::is_same::type, std::pair>::value, "update_abst: return type of f is not pair"); expr const & old_t = abst_domain(e); expr const & old_b = abst_body(e); std::pair p = f(old_t, old_b); if (!is_eqp(p.first, old_t) || !is_eqp(p.second, old_b)) { name const & n = abst_name(e); switch (e.kind()) { case expr_kind::Pi: return mk_pi(n, p.first, p.second); case expr_kind::Lambda: return mk_lambda(n, p.first, p.second); case expr_kind::Sigma: return mk_sigma(n, p.first, p.second); default: lean_unreachable(); } } else { return e; } } template expr update_let(expr const & e, F f) { static_assert(std::is_same const &, expr const &, expr const &)>::type, std::tuple, expr, expr>>::value, "update_let: return type of f is not tuple, expr, expr>"); optional const & old_t = let_type(e); expr const & old_v = let_value(e); expr const & old_b = let_body(e); std::tuple, expr, expr> r = f(old_t, old_v, old_b); if (!is_eqp(std::get<0>(r), old_t) || !is_eqp(std::get<1>(r), old_v) || !is_eqp(std::get<2>(r), old_b)) return mk_let(let_name(e), std::get<0>(r), std::get<1>(r), std::get<2>(r)); else return e; } template expr update_metavar(expr const & e, name const & n, F f) { static_assert(std::is_same::type, local_entry>::value, "update_metavar: return type of f(local_entry) is not local_entry"); buffer new_entries; bool modified = n != metavar_name(e); for (local_entry const & me : metavar_lctx(e)) { local_entry new_me = f(me); if (new_me.kind() != me.kind() || new_me.s() != me.s()) { modified = true; } else if (new_me.is_inst()) { if (!is_eqp(new_me.v(), me.v())) modified = true; } else if (new_me.n() != me.n()) { modified = true; } new_entries.push_back(new_me); } if (modified) return mk_metavar(n, to_list(new_entries.begin(), new_entries.end())); else return e; } template expr update_metavar(expr const & e, F f) { static_assert(std::is_same::type, local_entry>::value, "update_metavar: return type of f(local_entry) is not local_entry"); return update_metavar(e, metavar_name(e), f); } inline expr update_metavar(expr const & e, local_context const & lctx) { if (metavar_lctx(e) != lctx) return mk_metavar(metavar_name(e), lctx); else return e; } inline expr update_const(expr const & e, optional const & t) { if (!is_eqp(const_type(e), t)) return mk_constant(const_name(e), t); else return e; } template expr update_pair(expr const & e, F f) { expr const & old_f = pair_first(e); expr const & old_s = pair_second(e); expr const & old_t = pair_type(e); auto r = f(old_f, old_s, old_t); if (!is_eqp(std::get<0>(r), old_t) || !is_eqp(std::get<1>(r), old_s) || !is_eqp(std::get<2>(r), old_t)) return mk_pair(std::get<0>(r), std::get<1>(r), std::get<2>(r)); else return e; } inline expr update_pair(expr const & e, expr const & new_f, expr const & new_s, expr const & new_t) { return update_pair(e, [&](expr const &, expr const &, expr const &) { return std::make_tuple(new_f, new_s, new_t); }); } inline expr update_proj(expr const & e, expr const & new_arg) { if (!is_eqp(proj_arg(e), new_arg)) return mk_proj(proj_first(e), new_arg); else return e; } inline expr update_heq(expr const & e, expr const & new_lhs, expr const & new_rhs) { if (!is_eqp(heq_lhs(e), new_lhs) || !is_eqp(heq_rhs(e), new_rhs)) return mk_heq(new_lhs, new_rhs); else return e; } // ======================================= // ======================================= // Serializer/Deserializer serializer & operator<<(serializer & s, expr const & e); expr read_expr(deserializer & d); inline deserializer & operator>>(deserializer & d, expr & e) { e = read_expr(d); return d; } // ======================================= std::ostream & operator<<(std::ostream & out, expr const & e); }