---------------------------------------------------------------------------------------------------- -- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura ---------------------------------------------------------------------------------------------------- import logic.connectives.eq using eq_ops namespace binary section parameter {A : Type} parameter f : A → A → A infixl `*`:75 := f abbreviation commutative := ∀a b, a*b = b*a abbreviation associative := ∀a b c, (a*b)*c = a*(b*c) end section parameter {A : Type} parameter {f : A → A → A} infixl `*`:75 := f hypothesis H_comm : commutative f hypothesis H_assoc : associative f theorem left_comm : ∀a b c, a*(b*c) = b*(a*c) := take a b c, calc a*(b*c) = (a*b)*c : (H_assoc _ _ _)⁻¹ ... = (b*a)*c : {H_comm _ _} ... = b*(a*c) : H_assoc _ _ _ theorem right_comm : ∀a b c, (a*b)*c = (a*c)*b := take a b c, calc (a*b)*c = a*(b*c) : H_assoc _ _ _ ... = a*(c*b) : {H_comm _ _} ... = (a*c)*b : (H_assoc _ _ _)⁻¹ end end binary