import standard using bool eq_proofs tactic variables a b c : bool axiom H1 : a = b axiom H2 : b = c check have e1 [fact] : a = b, from H1, have e2 : a = c, by apply trans; apply e1; apply H2, have e3 : c = a, from e2⁻¹, have e4 [fact] : b = a, from e1⁻¹, have e5 : b = c, from e4 ⬝ e2, have e6 : a = a, from H1 ⬝ H2 ⬝ H2⁻¹ ⬝ H1⁻¹ ⬝ H1 ⬝ H2 ⬝ H2⁻¹ ⬝ H1⁻¹, e3 ⬝ e2