/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: init.tactic Author: Leonardo de Moura This is just a trick to embed the 'tactic language' as a Lean expression. We should view 'tactic' as automation that when execute produces a term. tactic.builtin is just a "dummy" for creating the definitions that are actually implemented in C++ -/ prelude import init.datatypes init.reserved_notation init.num inductive tactic : Type := builtin : tactic namespace tactic -- Remark the following names are not arbitrary, the tactic module -- uses them when converting Lean expressions into actual tactic objects. -- The bultin 'by' construct triggers the process of converting a -- a term of type 'tactic' into a tactic that sythesizes a term opaque definition and_then (t1 t2 : tactic) : tactic := builtin opaque definition or_else (t1 t2 : tactic) : tactic := builtin opaque definition append (t1 t2 : tactic) : tactic := builtin opaque definition interleave (t1 t2 : tactic) : tactic := builtin opaque definition par (t1 t2 : tactic) : tactic := builtin opaque definition fixpoint (f : tactic → tactic) : tactic := builtin opaque definition repeat (t : tactic) : tactic := builtin opaque definition at_most (t : tactic) (k : num) : tactic := builtin opaque definition discard (t : tactic) (k : num) : tactic := builtin opaque definition focus_at (t : tactic) (i : num) : tactic := builtin opaque definition try_for (t : tactic) (ms : num) : tactic := builtin opaque definition now : tactic := builtin opaque definition assumption : tactic := builtin opaque definition eassumption : tactic := builtin opaque definition state : tactic := builtin opaque definition fail : tactic := builtin opaque definition id : tactic := builtin opaque definition beta : tactic := builtin opaque definition info : tactic := builtin opaque definition whnf : tactic := builtin opaque definition rotate_left (k : num) := builtin opaque definition rotate_right (k : num) := builtin definition rotate (k : num) := rotate_left k -- This is just a trick to embed expressions into tactics. -- The nested expressions are "raw". They tactic should -- elaborate them when it is executed. inductive expr : Type := builtin : expr opaque definition apply (e : expr) : tactic := builtin opaque definition rapply (e : expr) : tactic := builtin opaque definition fapply (e : expr) : tactic := builtin opaque definition rename (a b : expr) : tactic := builtin opaque definition intro (e : expr) : tactic := builtin opaque definition generalize (e : expr) : tactic := builtin opaque definition clear (e : expr) : tactic := builtin opaque definition revert (e : expr) : tactic := builtin opaque definition unfold (e : expr) : tactic := builtin opaque definition exact (e : expr) : tactic := builtin -- rexact is similar to exact, but the goal type is enforced during elaboration opaque definition sexact (e : expr) : tactic := builtin opaque definition trace (s : string) : tactic := builtin inductive expr_list : Type := | nil : expr_list | cons : expr → expr_list → expr_list -- auxiliary type used to mark optional list of arguments definition opt_expr_list := expr_list -- rewrite_tac is just a marker for the builtin 'rewrite' notation -- used to create instances of this tactic. opaque definition rewrite_tac (e : expr_list) : tactic := builtin opaque definition cases (id : expr) (ids : opt_expr_list) : tactic := builtin opaque definition intros (ids : opt_expr_list) : tactic := builtin opaque definition generalizes (es : expr_list) : tactic := builtin opaque definition clears (ids : expr_list) : tactic := builtin opaque definition reverts (ids : expr_list) : tactic := builtin opaque definition change (e : expr) : tactic := builtin opaque definition assert_hypothesis (id : expr) (e : expr) : tactic := builtin infixl `;`:15 := and_then notation `[` h:10 `|`:10 r:(foldl:10 `|` (e r, or_else r e) h) `]` := r definition try (t : tactic) : tactic := [t | id] definition repeat1 (t : tactic) : tactic := t ; repeat t definition focus (t : tactic) : tactic := focus_at t 0 definition determ (t : tactic) : tactic := at_most t 1 definition trivial : tactic := [ apply eq.refl | assumption ] definition do (n : num) (t : tactic) : tactic := nat.rec id (λn t', (t;t')) (nat.of_num n) end tactic