/- Copyright (c) 2014 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jakob von Raumer -/ import .iso open iso is_equiv equiv eq is_trunc sigma /- A category is a precategory extended by a witness that the function from paths to isomorphisms is an equivalence. -/ namespace category /- TODO: restructure this. Should is_univalent be a class with as argument (C : Precategory). Or is that problematic if we want to apply this to cases where e.g. a b are functors, and we need to synthesize ? : precategory (functor C D). -/ definition is_univalent [class] {ob : Type} (C : precategory ob) := Π(a b : ob), is_equiv (iso_of_eq : a = b → a ≅ b) definition is_equiv_of_is_univalent [instance] {ob : Type} [C : precategory ob] [H : is_univalent C] (a b : ob) : is_equiv (iso_of_eq : a = b → a ≅ b) := H a b structure category [class] (ob : Type) extends parent : precategory ob := mk' :: (iso_of_path_equiv : is_univalent parent) -- Remark: category and precategory are classes. So, the structure command -- does not create a coercion between them automatically. -- This coercion is needed for definitions such as category_eq_of_equiv -- without it, we would have to explicitly use category.to_precategory attribute category.to_precategory [coercion] abbreviation iso_of_path_equiv := @category.iso_of_path_equiv attribute category.iso_of_path_equiv [instance] definition category.mk [reducible] [unfold 2] {ob : Type} (C : precategory ob) (H : is_univalent C) : category ob := precategory.rec_on C category.mk' H section basic variables {ob : Type} [C : category ob] include C -- Make iso_of_path_equiv a class instance attribute iso_of_path_equiv [instance] definition eq_equiv_iso [constructor] (a b : ob) : (a = b) ≃ (a ≅ b) := equiv.mk iso_of_eq _ definition eq_of_iso [reducible] {a b : ob} : a ≅ b → a = b := iso_of_eq⁻¹ᶠ definition iso_of_eq_eq_of_iso {a b : ob} (p : a ≅ b) : iso_of_eq (eq_of_iso p) = p := right_inv iso_of_eq p definition hom_of_eq_eq_of_iso {a b : ob} (p : a ≅ b) : hom_of_eq (eq_of_iso p) = to_hom p := ap to_hom !iso_of_eq_eq_of_iso definition inv_of_eq_eq_of_iso {a b : ob} (p : a ≅ b) : inv_of_eq (eq_of_iso p) = to_inv p := ap to_inv !iso_of_eq_eq_of_iso theorem eq_of_iso_refl {a : ob} : eq_of_iso (iso.refl a) = idp := inv_eq_of_eq idp theorem eq_of_iso_trans {a b c : ob} (p : a ≅ b) (q : b ≅ c) : eq_of_iso (p ⬝i q) = eq_of_iso p ⬝ eq_of_iso q := begin apply inv_eq_of_eq, apply eq.inverse, apply concat, apply iso_of_eq_con, apply concat, apply ap (λ x, x ⬝i _), apply iso_of_eq_eq_of_iso, apply ap (λ x, _ ⬝i x), apply iso_of_eq_eq_of_iso end definition is_trunc_1_ob : is_trunc 1 ob := begin apply is_trunc_succ_intro, intro a b, fapply is_trunc_is_equiv_closed, exact (@eq_of_iso _ _ a b), apply is_equiv_inv, end end basic -- Bundled version of categories -- we don't use Category.carrier explicitly, but rather use Precategory.carrier (to_Precategory C) structure Category : Type := (carrier : Type) (struct : category carrier) attribute Category.struct [instance] [coercion] definition Category.to_Precategory [constructor] [coercion] [reducible] (C : Category) : Precategory := Precategory.mk (Category.carrier C) _ definition category.Mk [constructor] [reducible] := Category.mk definition category.MK [constructor] [reducible] (C : Precategory) (H : is_univalent C) : Category := Category.mk C (category.mk C H) definition Category.eta (C : Category) : Category.mk C C = C := Category.rec (λob c, idp) C protected definition category.sigma_char.{u v} [constructor] (ob : Type) : category.{u v} ob ≃ Σ(C : precategory.{u v} ob), is_univalent C := begin fapply equiv.MK, { intro x, induction x, constructor, assumption}, { intro y, induction y with y1 y2, induction y1, constructor, assumption}, { intro y, induction y with y1 y2, induction y1, reflexivity}, { intro x, induction x, reflexivity} end definition category_eq {ob : Type} {C D : category ob} (p : Π{a b}, @hom ob C a b = @hom ob D a b) (q : Πa b c g f, cast p (@comp ob C a b c g f) = @comp ob D a b c (cast p g) (cast p f)) : C = D := begin apply inj !category.sigma_char, fapply sigma_eq, { induction C, induction D, esimp, exact precategory_eq @p q}, { unfold is_univalent, apply is_prop.elimo}, end definition category_eq_of_equiv {ob : Type} {C D : category ob} (p : Π⦃a b⦄, @hom ob C a b ≃ @hom ob D a b) (q : Π{a b c} g f, p (@comp ob C a b c g f) = @comp ob D a b c (p g) (p f)) : C = D := begin fapply category_eq, { intro a b, exact ua !@p}, { intros, refine !cast_ua ⬝ !q ⬝ _, unfold [category.to_precategory], apply ap011 !@category.comp !cast_ua⁻¹ᵖ !cast_ua⁻¹ᵖ}, end -- TODO: Category_eq['] end category