/* Copyright (c) 2013 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #include #include "normalize.h" #include "expr.h" #include "context.h" #include "environment.h" #include "free_vars.h" #include "list.h" #include "buffer.h" #include "trace.h" #include "exception.h" namespace lean { class svalue; typedef list value_stack; //!< Normalization stack enum class svalue_kind { Expr, Closure, BoundedVar }; /** \brief Stack value: simple expressions, closures and bounded variables. */ class svalue { svalue_kind m_kind; unsigned m_bvar; expr m_expr; value_stack m_ctx; public: explicit svalue(expr const & e): m_kind(svalue_kind::Expr), m_expr(e) {} explicit svalue(unsigned k): m_kind(svalue_kind::BoundedVar), m_bvar(k) {} svalue(expr const & e, value_stack const & c):m_kind(svalue_kind::Closure), m_expr(e), m_ctx(c) { lean_assert(is_lambda(e)); } svalue_kind kind() const { return m_kind; } bool is_expr() const { return kind() == svalue_kind::Expr; } bool is_closure() const { return kind() == svalue_kind::Closure; } bool is_bounded_var() const { return kind() == svalue_kind::BoundedVar; } expr const & get_expr() const { lean_assert(is_expr() || is_closure()); return m_expr; } value_stack const & get_ctx() const { lean_assert(is_closure()); return m_ctx; } unsigned get_var_idx() const { lean_assert(is_bounded_var()); return m_bvar; } }; svalue_kind kind(svalue const & v) { return v.kind(); } expr const & to_expr(svalue const & v) { return v.get_expr(); } value_stack const & stack_of(svalue const & v) { return v.get_ctx(); } unsigned to_bvar(svalue const & v) { return v.get_var_idx(); } value_stack extend(value_stack const & s, svalue const & v) { return cons(v, s); } /** \brief Expression normalizer. */ class normalize_fn { environment const & m_env; context const & m_ctx; svalue lookup(value_stack const & s, unsigned i, unsigned k) { unsigned j = i; value_stack const * it1 = &s; while (*it1) { if (j == 0) return head(*it1); --j; it1 = &tail(*it1); } context const & c = ::lean::lookup(m_ctx, j); if (c) { context_entry const & entry = head(c); if (entry.get_body()) return svalue(::lean::normalize(entry.get_body(), m_env, tail(c))); else return svalue(length(c) - 1); } throw exception("unknown free variable"); } /** \brief Convert the closure \c a into an expression using the given stack in a context that contains \c k binders. */ expr reify_closure(expr const & a, value_stack const & s, unsigned k) { lean_assert(is_lambda(a)); expr new_t = reify(normalize(abst_domain(a), s, k), k); expr new_b = reify(normalize(abst_body(a), extend(s, svalue(k)), k+1), k+1); return lambda(abst_name(a), new_t, new_b); #if 0 // Eta-reduction + Cumulativity + Set theoretic interpretation is unsound. // Example: // f : (Type 2) -> (Type 2) // (lambda (x : (Type 1)) (f x)) : (Type 1) -> (Type 2) // The domains of these two terms are different. So, they must have different denotations. // However, by eta-reduction, we have: // (lambda (x : (Type 1)) (f x)) == f // For now, we will disable it. // REMARK: we can workaround this problem by applying only when the domain of f is equal // to the domain of the lambda abstraction. // if (is_app(new_b)) { // (lambda (x:T) (app f ... (var 0))) // check eta-rule applicability unsigned n = num_args(new_b); if (is_var(arg(new_b, n - 1), 0) && std::all_of(begin_args(new_b), end_args(new_b) - 1, [](expr const & arg) { return !has_free_var(arg, 0); })) { if (n == 2) return lower_free_vars(arg(new_b, 0), 1); else return lower_free_vars(app(n - 1, begin_args(new_b)), 1); } return lambda(abst_name(a), new_t, new_b); } else { return lambda(abst_name(a), new_t, new_b); } #endif } /** \brief Convert the value \c v back into an expression in a context that contains \c k binders. */ expr reify(svalue const & v, unsigned k) { lean_trace("normalize", tout << "Reify kind: " << static_cast(v.kind()) << "\n"; if (v.is_bounded_var()) tout << "#" << to_bvar(v); else tout << to_expr(v); tout << "\n";); switch (v.kind()) { case svalue_kind::Expr: return to_expr(v); case svalue_kind::BoundedVar: return var(k - to_bvar(v) - 1); case svalue_kind::Closure: return reify_closure(to_expr(v), stack_of(v), k); } lean_unreachable(); return expr(); } /** \brief Normalize the expression \c a in a context composed of stack \c s and \c k binders. */ svalue normalize(expr const & a, value_stack const & s, unsigned k) { lean_trace("normalize", tout << "Normalize, k: " << k << "\n" << a << "\n";); switch (a.kind()) { case expr_kind::Var: return lookup(s, var_idx(a), k); case expr_kind::Constant: case expr_kind::Type: case expr_kind::Value: return svalue(a); case expr_kind::App: { svalue f = normalize(arg(a, 0), s, k); unsigned i = 1; unsigned n = num_args(a); while (true) { if (f.is_closure()) { // beta reduction expr const & fv = to_expr(f); lean_trace("normalize", tout << "beta reduction...\n" << fv << "\n";); value_stack new_s = extend(stack_of(f), normalize(arg(a, i), s, k)); f = normalize(abst_body(fv), new_s, k); if (i == n - 1) return f; i++; } else { // TODO: support for interpreted symbols buffer new_args; new_args.push_back(reify(f, k)); for (; i < n; i++) new_args.push_back(reify(normalize(arg(a, i), s, k), k)); return svalue(app(new_args.size(), new_args.data())); } } } case expr_kind::Lambda: return svalue(a, s); case expr_kind::Pi: { expr new_t = reify(normalize(abst_domain(a), s, k), k); expr new_b = reify(normalize(abst_body(a), extend(s, svalue(k)), k+1), k+1); return svalue(pi(abst_name(a), new_t, new_b)); }} lean_unreachable(); return svalue(a); } public: normalize_fn(environment const & env, context const & ctx): m_env(env), m_ctx(ctx) { } expr operator()(expr const & e) { unsigned k = length(m_ctx); return reify(normalize(e, value_stack(), k), k); } }; expr normalize(expr const & e, environment const & env, context const & ctx) { return normalize_fn(env, ctx)(e); } }