/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: types.equiv Author: Floris van Doorn Ported from Coq HoTT Theorems about the types equiv and is_equiv -/ import types.fiber types.arrow arity open eq is_trunc sigma sigma.ops arrow pi namespace is_equiv open equiv function section open fiber variables {A B : Type} (f : A → B) [H : is_equiv f] include H definition is_contr_fiber_of_is_equiv (b : B) : is_contr (fiber f b) := is_contr.mk (fiber.mk (f⁻¹ b) (right_inv f b)) (λz, fiber.rec_on z (λa p, fiber_eq ((ap f⁻¹ p)⁻¹ ⬝ left_inv f a) (calc right_inv f b = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ((ap (f ∘ f⁻¹) p) ⬝ right_inv f b) : by rewrite inv_con_cancel_left ... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (right_inv f (f a) ⬝ p) : by rewrite ap_con_eq_con ... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (ap f (left_inv f a) ⬝ p) : by rewrite adj ... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite con.assoc ... = (ap f (ap f⁻¹ p))⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite ap_compose ... = ap f (ap f⁻¹ p)⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite ap_inv ... = ap f ((ap f⁻¹ p)⁻¹ ⬝ left_inv f a) ⬝ p : by rewrite ap_con))) definition is_contr_right_inverse : is_contr (Σ(g : B → A), f ∘ g ∼ id) := begin fapply is_trunc_equiv_closed, {apply sigma_equiv_sigma_id, intro g, apply eq_equiv_homotopy}, fapply is_trunc_equiv_closed, {apply fiber.sigma_char}, fapply is_contr_fiber_of_is_equiv, apply (to_is_equiv (arrow_equiv_arrow_right (equiv.mk f H))), end definition is_contr_right_coherence (u : Σ(g : B → A), f ∘ g ∼ id) : is_contr (Σ(η : u.1 ∘ f ∼ id), Π(a : A), u.2 (f a) = ap f (η a)) := begin fapply is_trunc_equiv_closed, {apply equiv.symm, apply sigma_pi_equiv_pi_sigma}, fapply is_trunc_equiv_closed, {apply pi_equiv_pi_id, intro a, apply (fiber_eq_equiv (fiber.mk (u.1 (f a)) (u.2 (f a))) (fiber.mk a idp))}, fapply is_trunc_pi, intro a, fapply @is_contr_eq, apply is_contr_fiber_of_is_equiv end end variables {A B : Type} (f : A → B) protected definition sigma_char : (is_equiv f) ≃ (Σ(g : B → A) (ε : f ∘ g ∼ id) (η : g ∘ f ∼ id), Π(a : A), ε (f a) = ap f (η a)) := equiv.MK (λH, ⟨inv f, right_inv f, left_inv f, adj f⟩) (λp, is_equiv.mk f p.1 p.2.1 p.2.2.1 p.2.2.2) (λp, begin cases p with [p1, p2], cases p2 with [p21, p22], cases p22 with [p221, p222], apply idp end) (λH, is_equiv.rec_on H (λH1 H2 H3 H4, idp)) protected definition sigma_char' : (is_equiv f) ≃ (Σ(u : Σ(g : B → A), f ∘ g ∼ id), Σ(η : u.1 ∘ f ∼ id), Π(a : A), u.2 (f a) = ap f (η a)) := calc (is_equiv f) ≃ (Σ(g : B → A) (ε : f ∘ g ∼ id) (η : g ∘ f ∼ id), Π(a : A), ε (f a) = ap f (η a)) : is_equiv.sigma_char ... ≃ (Σ(u : Σ(g : B → A), f ∘ g ∼ id), Σ(η : u.1 ∘ f ∼ id), Π(a : A), u.2 (f a) = ap f (η a)) : {sigma_assoc_equiv (λu, Σ(η : u.1 ∘ f ∼ id), Π(a : A), u.2 (f a) = ap f (η a))} local attribute is_contr_right_inverse [instance] [priority 1600] local attribute is_contr_right_coherence [instance] [priority 1600] theorem is_hprop_is_equiv [instance] : is_hprop (is_equiv f) := is_hprop_of_imp_is_contr (λ(H : is_equiv f), is_trunc_equiv_closed -2 (equiv.symm !sigma_char')) /- contractible fibers -/ -- TODO: uncomment this (needs to import instance is_hprop_is_trunc) -- definition is_contr_fun [reducible] {A B : Type} (f : A → B) := Π(b : B), is_contr (fiber f b) -- definition is_hprop_is_contr_fun (f : A → B) : is_hprop (is_contr_fun f) := _ -- definition is_equiv_of_is_contr_fun [instance] [H : is_contr_fun f] : is_equiv f := -- adjointify _ (λb, point (center (fiber f b))) -- (λb, point_eq (center (fiber f b))) -- (λa, ap point (contr (fiber.mk a idp))) -- definition is_equiv_of_imp_is_equiv (H : B → is_equiv f) : is_equiv f := -- @is_equiv_of_is_contr_fun _ _ f (is_contr_fun.mk (λb, @is_contr_fiber_of_is_equiv _ _ _ (H b) _)) end is_equiv namespace equiv open is_equiv variables {A B : Type} definition equiv_mk_eq {f f' : A → B} [H : is_equiv f] [H' : is_equiv f'] (p : f = f') : equiv.mk f H = equiv.mk f' H' := apd011 equiv.mk p !is_hprop.elim definition equiv_eq {f f' : A ≃ B} (p : to_fun f = to_fun f') : f = f' := by (cases f; cases f'; apply (equiv_mk_eq p)) end equiv