/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad, Leonardo de Moura -/ import logic.connectives logic.identities algebra.binary open eq.ops binary function definition set (X : Type) := X → Prop namespace set variable {X : Type} /- membership and subset -/ definition mem (x : X) (a : set X) := a x infix ∈ := mem notation a ∉ b := ¬ mem a b theorem ext {a b : set X} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b := funext (take x, propext (H x)) definition subset (a b : set X) := ∀⦃x⦄, x ∈ a → x ∈ b infix ⊆ := subset definition superset (s t : set X) : Prop := t ⊆ s infix ⊇ := superset theorem subset.refl (a : set X) : a ⊆ a := take x, assume H, H theorem subset.trans {a b c : set X} (subab : a ⊆ b) (subbc : b ⊆ c) : a ⊆ c := take x, assume ax, subbc (subab ax) theorem subset.antisymm {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b := ext (λ x, iff.intro (λ ina, h₁ ina) (λ inb, h₂ inb)) -- an alterantive name theorem eq_of_subset_of_subset {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b := subset.antisymm h₁ h₂ theorem mem_of_subset_of_mem {s₁ s₂ : set X} {a : X} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ := assume h₁ h₂, h₁ _ h₂ /- strict subset -/ definition strict_subset (a b : set X) := a ⊆ b ∧ a ≠ b infix ` ⊂ `:50 := strict_subset theorem strict_subset.irrefl (a : set X) : ¬ a ⊂ a := assume h, absurd rfl (and.elim_right h) /- bounded quantification -/ abbreviation bounded_forall (a : set X) (P : X → Prop) := ∀⦃x⦄, x ∈ a → P x notation `forallb` binders `∈` a `, ` r:(scoped:1 P, P) := bounded_forall a r notation `∀₀` binders `∈` a `, ` r:(scoped:1 P, P) := bounded_forall a r abbreviation bounded_exists (a : set X) (P : X → Prop) := ∃⦃x⦄, x ∈ a ∧ P x notation `existsb` binders `∈` a `, ` r:(scoped:1 P, P) := bounded_exists a r notation `∃₀` binders `∈` a `, ` r:(scoped:1 P, P) := bounded_exists a r theorem bounded_exists.intro {P : X → Prop} {s : set X} {x : X} (xs : x ∈ s) (Px : P x) : ∃₀ x ∈ s, P x := exists.intro x (and.intro xs Px) lemma bounded_forall_congr {A : Type} {S : set A} {P Q : A → Prop} (H : ∀₀ x∈S, P x ↔ Q x) : (∀₀ x ∈ S, P x) = (∀₀ x ∈ S, Q x) := begin apply propext, apply forall_congr, intros x, apply imp_congr_right, apply H end lemma bounded_exists_congr {A : Type} {S : set A} {P Q : A → Prop} (H : ∀₀ x∈S, P x ↔ Q x) : (∃₀ x ∈ S, P x) = (∃₀ x ∈ S, Q x) := begin apply propext, apply exists_congr, intros x, apply and_congr_right, apply H end section open classical lemma not_bounded_exists {A : Type} {S : set A} {P : A → Prop} : (¬ (∃₀ x ∈ S, P x)) = (∀₀ x ∈ S, ¬ P x) := begin rewrite forall_iff_not_exists, apply propext, apply forall_congr, intro x, rewrite not_and_iff_not_or_not, rewrite imp_iff_not_or end lemma not_bounded_forall {A : Type} {S : set A} {P : A → Prop} : (¬ (∀₀ x ∈ S, P x)) = (∃₀ x ∈ S, ¬ P x) := calc (¬ (∀₀ x ∈ S, P x)) = ¬ ¬ (∃₀ x ∈ S, ¬ P x) : begin rewrite not_bounded_exists, apply (congr_arg not), apply bounded_forall_congr, intros x H, rewrite not_not_iff end ... = (∃₀ x ∈ S, ¬ P x) : by (rewrite not_not_iff) end /- empty set -/ definition empty : set X := λx, false notation `∅` := empty theorem not_mem_empty (x : X) : ¬ (x ∈ ∅) := assume H : x ∈ ∅, H theorem mem_empty_eq (x : X) : x ∈ ∅ = false := rfl theorem eq_empty_of_forall_not_mem {s : set X} (H : ∀ x, x ∉ s) : s = ∅ := ext (take x, iff.intro (assume xs, absurd xs (H x)) (assume xe, absurd xe !not_mem_empty)) theorem ne_empty_of_mem {s : set X} {x : X} (H : x ∈ s) : s ≠ ∅ := begin intro Hs, rewrite Hs at H, apply not_mem_empty _ H end section open classical theorem exists_mem_of_ne_empty {s : set X} (H : s ≠ ∅) : ∃ x, x ∈ s := by_contradiction (assume H', H (eq_empty_of_forall_not_mem (forall_not_of_not_exists H'))) end theorem empty_subset (s : set X) : ∅ ⊆ s := take x, assume H, false.elim H theorem eq_empty_of_subset_empty {s : set X} (H : s ⊆ ∅) : s = ∅ := subset.antisymm H (empty_subset s) theorem subset_empty_iff (s : set X) : s ⊆ ∅ ↔ s = ∅ := iff.intro eq_empty_of_subset_empty (take xeq, by rewrite xeq; apply subset.refl ∅) lemma bounded_forall_empty_iff {P : X → Prop} : (∀₀x∈∅, P x) ↔ true := iff.intro (take H, true.intro) (take H, by contradiction) /- universal set -/ definition univ : set X := λx, true theorem mem_univ (x : X) : x ∈ univ := trivial theorem mem_univ_iff (x : X) : x ∈ univ ↔ true := !iff.refl theorem mem_univ_eq (x : X) : x ∈ univ = true := rfl theorem empty_ne_univ [h : inhabited X] : (empty : set X) ≠ univ := assume H : empty = univ, absurd (mem_univ (inhabited.value h)) (eq.rec_on H (not_mem_empty _)) theorem subset_univ (s : set X) : s ⊆ univ := λ x H, trivial theorem eq_univ_of_univ_subset {s : set X} (H : univ ⊆ s) : s = univ := eq_of_subset_of_subset (subset_univ s) H theorem eq_univ_of_forall {s : set X} (H : ∀ x, x ∈ s) : s = univ := ext (take x, iff.intro (assume H', trivial) (assume H', H x)) /- union -/ definition union (a b : set X) : set X := λx, x ∈ a ∨ x ∈ b notation a ∪ b := union a b theorem mem_union_left {x : X} {a : set X} (b : set X) : x ∈ a → x ∈ a ∪ b := assume h, or.inl h theorem mem_union_right {x : X} {b : set X} (a : set X) : x ∈ b → x ∈ a ∪ b := assume h, or.inr h theorem mem_unionl {x : X} {a b : set X} : x ∈ a → x ∈ a ∪ b := assume h, or.inl h theorem mem_unionr {x : X} {a b : set X} : x ∈ b → x ∈ a ∪ b := assume h, or.inr h theorem mem_or_mem_of_mem_union {x : X} {a b : set X} (H : x ∈ a ∪ b) : x ∈ a ∨ x ∈ b := H theorem mem_union.elim {x : X} {a b : set X} {P : Prop} (H₁ : x ∈ a ∪ b) (H₂ : x ∈ a → P) (H₃ : x ∈ b → P) : P := or.elim H₁ H₂ H₃ theorem mem_union_iff (x : X) (a b : set X) : x ∈ a ∪ b ↔ x ∈ a ∨ x ∈ b := !iff.refl theorem mem_union_eq (x : X) (a b : set X) : x ∈ a ∪ b = (x ∈ a ∨ x ∈ b) := rfl theorem union_self (a : set X) : a ∪ a = a := ext (take x, !or_self) theorem union_empty (a : set X) : a ∪ ∅ = a := ext (take x, !or_false) theorem empty_union (a : set X) : ∅ ∪ a = a := ext (take x, !false_or) theorem union_comm (a b : set X) : a ∪ b = b ∪ a := ext (take x, or.comm) theorem union_assoc (a b c : set X) : (a ∪ b) ∪ c = a ∪ (b ∪ c) := ext (take x, or.assoc) theorem union_left_comm (s₁ s₂ s₃ : set X) : s₁ ∪ (s₂ ∪ s₃) = s₂ ∪ (s₁ ∪ s₃) := !left_comm union_comm union_assoc s₁ s₂ s₃ theorem union_right_comm (s₁ s₂ s₃ : set X) : (s₁ ∪ s₂) ∪ s₃ = (s₁ ∪ s₃) ∪ s₂ := !right_comm union_comm union_assoc s₁ s₂ s₃ theorem subset_union_left (s t : set X) : s ⊆ s ∪ t := λ x H, or.inl H theorem subset_union_right (s t : set X) : t ⊆ s ∪ t := λ x H, or.inr H theorem union_subset {s t r : set X} (sr : s ⊆ r) (tr : t ⊆ r) : s ∪ t ⊆ r := λ x xst, or.elim xst (λ xs, sr xs) (λ xt, tr xt) /- intersection -/ definition inter (a b : set X) : set X := λx, x ∈ a ∧ x ∈ b notation a ∩ b := inter a b theorem mem_inter_iff (x : X) (a b : set X) : x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b := !iff.refl theorem mem_inter_eq (x : X) (a b : set X) : x ∈ a ∩ b = (x ∈ a ∧ x ∈ b) := rfl theorem mem_inter {x : X} {a b : set X} (Ha : x ∈ a) (Hb : x ∈ b) : x ∈ a ∩ b := and.intro Ha Hb theorem mem_of_mem_inter_left {x : X} {a b : set X} (H : x ∈ a ∩ b) : x ∈ a := and.left H theorem mem_of_mem_inter_right {x : X} {a b : set X} (H : x ∈ a ∩ b) : x ∈ b := and.right H theorem inter_self (a : set X) : a ∩ a = a := ext (take x, !and_self) theorem inter_empty (a : set X) : a ∩ ∅ = ∅ := ext (take x, !and_false) theorem empty_inter (a : set X) : ∅ ∩ a = ∅ := ext (take x, !false_and) theorem nonempty_of_inter_nonempty_right {T : Type} {s t : set T} (H : s ∩ t ≠ ∅) : t ≠ ∅ := suppose t = ∅, have s ∩ t = ∅, by rewrite this; apply inter_empty, H this theorem nonempty_of_inter_nonempty_left {T : Type} {s t : set T} (H : s ∩ t ≠ ∅) : s ≠ ∅ := suppose s = ∅, have s ∩ t = ∅, by rewrite this; apply empty_inter, H this theorem inter_comm (a b : set X) : a ∩ b = b ∩ a := ext (take x, !and.comm) theorem inter_assoc (a b c : set X) : (a ∩ b) ∩ c = a ∩ (b ∩ c) := ext (take x, !and.assoc) theorem inter_left_comm (s₁ s₂ s₃ : set X) : s₁ ∩ (s₂ ∩ s₃) = s₂ ∩ (s₁ ∩ s₃) := !left_comm inter_comm inter_assoc s₁ s₂ s₃ theorem inter_right_comm (s₁ s₂ s₃ : set X) : (s₁ ∩ s₂) ∩ s₃ = (s₁ ∩ s₃) ∩ s₂ := !right_comm inter_comm inter_assoc s₁ s₂ s₃ theorem inter_univ (a : set X) : a ∩ univ = a := ext (take x, !and_true) theorem univ_inter (a : set X) : univ ∩ a = a := ext (take x, !true_and) theorem inter_subset_left (s t : set X) : s ∩ t ⊆ s := λ x H, and.left H theorem inter_subset_right (s t : set X) : s ∩ t ⊆ t := λ x H, and.right H theorem inter_subset_inter_right {s t : set X} (u : set X) (H : s ⊆ t) : s ∩ u ⊆ t ∩ u := take x, assume xsu, and.intro (H (and.left xsu)) (and.right xsu) theorem inter_subset_inter_left {s t : set X} (u : set X) (H : s ⊆ t) : u ∩ s ⊆ u ∩ t := take x, assume xus, and.intro (and.left xus) (H (and.right xus)) theorem subset_inter {s t r : set X} (rs : r ⊆ s) (rt : r ⊆ t) : r ⊆ s ∩ t := λ x xr, and.intro (rs xr) (rt xr) theorem not_mem_of_mem_of_not_mem_inter_left {s t : set X} {x : X} (Hxs : x ∈ s) (Hnm : x ∉ s ∩ t) : x ∉ t := suppose x ∈ t, have x ∈ s ∩ t, from and.intro Hxs this, show false, from Hnm this theorem not_mem_of_mem_of_not_mem_inter_right {s t : set X} {x : X} (Hxs : x ∈ t) (Hnm : x ∉ s ∩ t) : x ∉ s := suppose x ∈ s, have x ∈ s ∩ t, from and.intro this Hxs, show false, from Hnm this /- distributivity laws -/ theorem inter_distrib_left (s t u : set X) : s ∩ (t ∪ u) = (s ∩ t) ∪ (s ∩ u) := ext (take x, !and.left_distrib) theorem inter_distrib_right (s t u : set X) : (s ∪ t) ∩ u = (s ∩ u) ∪ (t ∩ u) := ext (take x, !and.right_distrib) theorem union_distrib_left (s t u : set X) : s ∪ (t ∩ u) = (s ∪ t) ∩ (s ∪ u) := ext (take x, !or.left_distrib) theorem union_distrib_right (s t u : set X) : (s ∩ t) ∪ u = (s ∪ u) ∩ (t ∪ u) := ext (take x, !or.right_distrib) /- set-builder notation -/ -- {x : X | P} definition set_of (P : X → Prop) : set X := P notation `{` binder ` | ` r:(scoped:1 P, set_of P) `}` := r -- {x ∈ s | P} definition sep (P : X → Prop) (s : set X) : set X := λx, x ∈ s ∧ P x notation `{` binder ` ∈ ` s ` | ` r:(scoped:1 p, sep p s) `}` := r /- insert -/ definition insert (x : X) (a : set X) : set X := {y : X | y = x ∨ y ∈ a} -- '{x, y, z} notation `'{`:max a:(foldr `, ` (x b, insert x b) ∅) `}`:0 := a theorem subset_insert (x : X) (a : set X) : a ⊆ insert x a := take y, assume ys, or.inr ys theorem mem_insert (x : X) (s : set X) : x ∈ insert x s := or.inl rfl theorem mem_insert_of_mem {x : X} {s : set X} (y : X) : x ∈ s → x ∈ insert y s := assume h, or.inr h theorem eq_or_mem_of_mem_insert {x a : X} {s : set X} : x ∈ insert a s → x = a ∨ x ∈ s := assume h, h theorem mem_of_mem_insert_of_ne {x a : X} {s : set X} (xin : x ∈ insert a s) : x ≠ a → x ∈ s := or_resolve_right (eq_or_mem_of_mem_insert xin) theorem mem_insert_eq (x a : X) (s : set X) : x ∈ insert a s = (x = a ∨ x ∈ s) := propext (iff.intro !eq_or_mem_of_mem_insert (or.rec (λH', (eq.substr H' !mem_insert)) !mem_insert_of_mem)) theorem insert_eq_of_mem {a : X} {s : set X} (H : a ∈ s) : insert a s = s := ext (λ x, eq.substr (mem_insert_eq x a s) (or_iff_right_of_imp (λH1, eq.substr H1 H))) theorem insert.comm (x y : X) (s : set X) : insert x (insert y s) = insert y (insert x s) := ext (take a, by rewrite [*mem_insert_eq, propext !or.left_comm]) -- useful in proofs by induction theorem forall_of_forall_insert {P : X → Prop} {a : X} {s : set X} (H : ∀ x, x ∈ insert a s → P x) : ∀ x, x ∈ s → P x := λ x xs, H x (!mem_insert_of_mem xs) lemma bounded_forall_insert_iff {P : X → Prop} {a : X} {s : set X} : (∀₀x ∈ insert a s, P x) ↔ P a ∧ (∀₀x ∈ s, P x) := begin apply iff.intro, all_goals (intro H), { apply and.intro, { apply H, apply mem_insert }, { intro x Hx, apply H, apply mem_insert_of_mem, assumption } }, { intro x Hx, cases Hx with eq Hx, { cases eq, apply (and.elim_left H) }, { apply (and.elim_right H), assumption } } end /- singleton -/ theorem mem_singleton_iff (a b : X) : a ∈ '{b} ↔ a = b := iff.intro (assume ainb, or.elim ainb (λ aeqb, aeqb) (λ f, false.elim f)) (assume aeqb, or.inl aeqb) theorem mem_singleton (a : X) : a ∈ '{a} := !mem_insert theorem eq_of_mem_singleton {x y : X} (h : x ∈ '{y}) : x = y := or.elim (eq_or_mem_of_mem_insert h) (suppose x = y, this) (suppose x ∈ ∅, absurd this !not_mem_empty) theorem mem_singleton_of_eq {x y : X} (H : x = y) : x ∈ '{y} := eq.symm H ▸ mem_singleton y theorem insert_eq (x : X) (s : set X) : insert x s = '{x} ∪ s := ext (take y, iff.intro (suppose y ∈ insert x s, or.elim this (suppose y = x, or.inl (or.inl this)) (suppose y ∈ s, or.inr this)) (suppose y ∈ '{x} ∪ s, or.elim this (suppose y ∈ '{x}, or.inl (eq_of_mem_singleton this)) (suppose y ∈ s, or.inr this))) theorem pair_eq_singleton (a : X) : '{a, a} = '{a} := by rewrite [insert_eq_of_mem !mem_singleton] theorem singleton_ne_empty (a : X) : '{a} ≠ ∅ := begin intro H, apply not_mem_empty a, rewrite -H, apply mem_insert end /- separation -/ theorem mem_sep {s : set X} {P : X → Prop} {x : X} (xs : x ∈ s) (Px : P x) : x ∈ {x ∈ s | P x} := and.intro xs Px theorem eq_sep_of_subset {s t : set X} (ssubt : s ⊆ t) : s = {x ∈ t | x ∈ s} := ext (take x, iff.intro (suppose x ∈ s, and.intro (ssubt this) this) (suppose x ∈ {x ∈ t | x ∈ s}, and.right this)) theorem mem_sep_iff {s : set X} {P : X → Prop} {x : X} : x ∈ {x ∈ s | P x} ↔ x ∈ s ∧ P x := !iff.refl theorem sep_subset (s : set X) (P : X → Prop) : {x ∈ s | P x} ⊆ s := take x, assume H, and.left H theorem forall_not_of_sep_empty {s : set X} {P : X → Prop} (H : {x ∈ s | P x} = ∅) : ∀₀ x ∈ s, ¬ P x := take x, suppose x ∈ s, suppose P x, have x ∈ {x ∈ s | P x}, from and.intro `x ∈ s` this, show false, from ne_empty_of_mem this H /- complement -/ definition compl (s : set X) : set X := {x | x ∉ s} prefix `-` := compl theorem mem_compl {s : set X} {x : X} (H : x ∉ s) : x ∈ -s := H theorem not_mem_of_mem_compl {s : set X} {x : X} (H : x ∈ -s) : x ∉ s := H theorem mem_compl_iff (s : set X) (x : X) : x ∈ -s ↔ x ∉ s := !iff.refl theorem inter_compl_self (s : set X) : s ∩ -s = ∅ := ext (take x, !and_not_self_iff) theorem compl_inter_self (s : set X) : -s ∩ s = ∅ := ext (take x, !not_and_self_iff) /- some classical identities -/ section open classical theorem compl_empty : -(∅ : set X) = univ := ext (take x, iff.intro (assume H, trivial) (assume H, not_false)) theorem compl_union (s t : set X) : -(s ∪ t) = -s ∩ -t := ext (take x, !not_or_iff_not_and_not) theorem compl_compl (s : set X) : -(-s) = s := ext (take x, !not_not_iff) theorem compl_inter (s t : set X) : -(s ∩ t) = -s ∪ -t := ext (take x, !not_and_iff_not_or_not) theorem compl_univ : -(univ : set X) = ∅ := by rewrite [-compl_empty, compl_compl] theorem union_eq_compl_compl_inter_compl (s t : set X) : s ∪ t = -(-s ∩ -t) := ext (take x, !or_iff_not_and_not) theorem inter_eq_compl_compl_union_compl (s t : set X) : s ∩ t = -(-s ∪ -t) := ext (take x, !and_iff_not_or_not) theorem union_compl_self (s : set X) : s ∪ -s = univ := ext (take x, !or_not_self_iff) theorem compl_union_self (s : set X) : -s ∪ s = univ := ext (take x, !not_or_self_iff) theorem compl_comp_compl : #function compl ∘ compl = @id (set X) := funext (λ s, compl_compl s) end /- set difference -/ definition diff (s t : set X) : set X := {x ∈ s | x ∉ t} infix `\`:70 := diff theorem mem_diff {s t : set X} {x : X} (H1 : x ∈ s) (H2 : x ∉ t) : x ∈ s \ t := and.intro H1 H2 theorem mem_of_mem_diff {s t : set X} {x : X} (H : x ∈ s \ t) : x ∈ s := and.left H theorem not_mem_of_mem_diff {s t : set X} {x : X} (H : x ∈ s \ t) : x ∉ t := and.right H theorem mem_diff_iff (s t : set X) (x : X) : x ∈ s \ t ↔ x ∈ s ∧ x ∉ t := !iff.refl theorem mem_diff_eq (s t : set X) (x : X) : x ∈ s \ t = (x ∈ s ∧ x ∉ t) := rfl theorem diff_eq (s t : set X) : s \ t = s ∩ -t := rfl theorem union_diff_cancel {s t : set X} [dec : Π x, decidable (x ∈ s)] (H : s ⊆ t) : s ∪ (t \ s) = t := ext (take x, iff.intro (assume H1 : x ∈ s ∪ (t \ s), or.elim H1 (assume H2, !H H2) (assume H2, and.left H2)) (assume H1 : x ∈ t, decidable.by_cases (suppose x ∈ s, or.inl this) (suppose x ∉ s, or.inr (and.intro H1 this)))) theorem diff_subset (s t : set X) : s \ t ⊆ s := inter_subset_left s _ theorem compl_eq_univ_diff (s : set X) : -s = univ \ s := ext (take x, iff.intro (assume H, and.intro trivial H) (assume H, and.right H)) /- powerset -/ definition powerset (s : set X) : set (set X) := {x : set X | x ⊆ s} prefix `𝒫`:100 := powerset theorem mem_powerset {x s : set X} (H : x ⊆ s) : x ∈ 𝒫 s := H theorem subset_of_mem_powerset {x s : set X} (H : x ∈ 𝒫 s) : x ⊆ s := H theorem mem_powerset_iff (x s : set X) : x ∈ 𝒫 s ↔ x ⊆ s := !iff.refl /- function image -/ section image variables {Y Z : Type} abbreviation eq_on (f1 f2 : X → Y) (a : set X) : Prop := ∀₀ x ∈ a, f1 x = f2 x definition image (f : X → Y) (a : set X) : set Y := {y : Y | ∃x, x ∈ a ∧ f x = y} infix ` ' ` := image theorem image_eq_image_of_eq_on {f1 f2 : X → Y} {a : set X} (H1 : eq_on f1 f2 a) : f1 ' a = f2 ' a := ext (take y, iff.intro (assume H2, obtain x (H3 : x ∈ a ∧ f1 x = y), from H2, have H4 : x ∈ a, from and.left H3, have H5 : f2 x = y, from (H1 H4)⁻¹ ⬝ and.right H3, exists.intro x (and.intro H4 H5)) (assume H2, obtain x (H3 : x ∈ a ∧ f2 x = y), from H2, have H4 : x ∈ a, from and.left H3, have H5 : f1 x = y, from (H1 H4) ⬝ and.right H3, exists.intro x (and.intro H4 H5))) theorem mem_image {f : X → Y} {a : set X} {x : X} {y : Y} (H1 : x ∈ a) (H2 : f x = y) : y ∈ f ' a := exists.intro x (and.intro H1 H2) theorem mem_image_of_mem (f : X → Y) {x : X} {a : set X} (H : x ∈ a) : f x ∈ image f a := mem_image H rfl lemma image_comp (f : Y → Z) (g : X → Y) (a : set X) : (f ∘ g) ' a = f ' (g ' a) := ext (take z, iff.intro (assume Hz : z ∈ (f ∘ g) ' a, obtain x (Hx₁ : x ∈ a) (Hx₂ : f (g x) = z), from Hz, have Hgx : g x ∈ g ' a, from mem_image Hx₁ rfl, show z ∈ f ' (g ' a), from mem_image Hgx Hx₂) (assume Hz : z ∈ f ' (g 'a), obtain y (Hy₁ : y ∈ g ' a) (Hy₂ : f y = z), from Hz, obtain x (Hz₁ : x ∈ a) (Hz₂ : g x = y), from Hy₁, show z ∈ (f ∘ g) ' a, from mem_image Hz₁ (Hz₂⁻¹ ▸ Hy₂))) lemma image_subset {a b : set X} (f : X → Y) (H : a ⊆ b) : f ' a ⊆ f ' b := take y, assume Hy : y ∈ f ' a, obtain x (Hx₁ : x ∈ a) (Hx₂ : f x = y), from Hy, mem_image (H Hx₁) Hx₂ theorem image_union (f : X → Y) (s t : set X) : image f (s ∪ t) = image f s ∪ image f t := ext (take y, iff.intro (assume H : y ∈ image f (s ∪ t), obtain x [(xst : x ∈ s ∪ t) (fxy : f x = y)], from H, or.elim xst (assume xs, or.inl (mem_image xs fxy)) (assume xt, or.inr (mem_image xt fxy))) (assume H : y ∈ image f s ∪ image f t, or.elim H (assume yifs : y ∈ image f s, obtain x [(xs : x ∈ s) (fxy : f x = y)], from yifs, mem_image (or.inl xs) fxy) (assume yift : y ∈ image f t, obtain x [(xt : x ∈ t) (fxy : f x = y)], from yift, mem_image (or.inr xt) fxy))) theorem image_empty (f : X → Y) : image f ∅ = ∅ := eq_empty_of_forall_not_mem (take y, suppose y ∈ image f ∅, obtain x [(H : x ∈ empty) H'], from this, H) theorem mem_image_compl (t : set X) (S : set (set X)) : t ∈ compl ' S ↔ -t ∈ S := iff.intro (suppose t ∈ compl ' S, obtain t' [(Ht' : t' ∈ S) (Ht : -t' = t)], from this, show -t ∈ S, by rewrite [-Ht, compl_compl]; exact Ht') (suppose -t ∈ S, have -(-t) ∈ compl 'S, from mem_image_of_mem compl this, show t ∈ compl 'S, from compl_compl t ▸ this) theorem image_id (s : set X) : id ' s = s := ext (take x, iff.intro (suppose x ∈ id ' s, obtain x' [(Hx' : x' ∈ s) (x'eq : x' = x)], from this, show x ∈ s, by rewrite [-x'eq]; apply Hx') (suppose x ∈ s, mem_image_of_mem id this)) theorem compl_compl_image (S : set (set X)) : compl ' (compl ' S) = S := by rewrite [-image_comp, compl_comp_compl, image_id] lemma bounded_forall_image_of_bounded_forall {f : X → Y} {S : set X} {P : Y → Prop} (H : ∀₀ x ∈ S, P (f x)) : ∀₀ y ∈ f ' S, P y := begin intro x' Hx; cases Hx with x Hx; cases Hx with Hx eq; rewrite (eq⁻¹); apply H; assumption end lemma bounded_forall_image_iff {f : X → Y} {S : set X} {P : Y → Prop} : (∀₀ y ∈ f ' S, P y) ↔ (∀₀ x ∈ S, P (f x)) := iff.intro (take H x Hx, H _ (!mem_image_of_mem `x ∈ S`)) bounded_forall_image_of_bounded_forall lemma image_insert_eq {f : X → Y} {a : X} {S : set X} : f ' insert a S = insert (f a) (f ' S) := begin apply set.ext, intro x, apply iff.intro, all_goals (intros H), { cases H with y Hy, cases Hy with Hy eq, rewrite (eq⁻¹), cases Hy with y_eq, { rewrite y_eq, apply mem_insert }, { apply mem_insert_of_mem, apply mem_image_of_mem, assumption } }, { cases H with eq Hx, { rewrite eq, apply mem_image_of_mem, apply mem_insert }, { cases Hx with y Hy, cases Hy with Hy eq, rewrite (eq⁻¹), apply mem_image_of_mem, apply mem_insert_of_mem, assumption } } end end image /- collections of disjoint sets -/ definition disjoint_sets (S : set (set X)) : Prop := ∀ a b, a ∈ S → b ∈ S → a ≠ b → a ∩ b = ∅ theorem disjoint_sets_empty : disjoint_sets (∅ : set (set X)) := take a b, assume H, !not.elim !not_mem_empty H theorem disjoint_sets_union {s t : set (set X)} (Hs : disjoint_sets s) (Ht : disjoint_sets t) (H : ∀ x y, x ∈ s ∧ y ∈ t → x ∩ y = ∅) : disjoint_sets (s ∪ t) := take a b, assume Ha Hb Hneq, or.elim Ha (assume H1, or.elim Hb (suppose b ∈ s, (Hs a b) H1 this Hneq) (suppose b ∈ t, (H a b) (and.intro H1 this))) (assume H2, or.elim Hb (suppose b ∈ s, !inter_comm ▸ ((H b a) (and.intro this H2))) (suppose b ∈ t, (Ht a b) H2 this Hneq)) theorem disjoint_sets_singleton (s : set (set X)) : disjoint_sets '{s} := take a b, assume Ha Hb Hneq, absurd (eq.trans ((iff.elim_left !mem_singleton_iff) Ha) ((iff.elim_left !mem_singleton_iff) Hb)⁻¹) Hneq /- large unions -/ section large_unions variables {I : Type} variable a : set I variable b : I → set X variable C : set (set X) definition sUnion : set X := {x : X | ∃₀ c ∈ C, x ∈ c} definition sInter : set X := {x : X | ∀₀ c ∈ C, x ∈ c} prefix `⋃₀`:110 := sUnion prefix `⋂₀`:110 := sInter definition Union : set X := {x : X | ∃i, x ∈ b i} definition Inter : set X := {x : X | ∀i, x ∈ b i} notation `⋃` binders `, ` r:(scoped f, Union f) := r notation `⋂` binders `, ` r:(scoped f, Inter f) := r definition bUnion : set X := {x : X | ∃₀ i ∈ a, x ∈ b i} definition bInter : set X := {x : X | ∀₀ i ∈ a, x ∈ b i} notation `⋃` binders ` ∈ ` s `, ` r:(scoped f, bUnion s f) := r notation `⋂` binders ` ∈ ` s `, ` r:(scoped f, bInter s f) := r end large_unions -- sUnion and sInter: a collection (set) of sets theorem mem_sUnion {x : X} {t : set X} {S : set (set X)} (Hx : x ∈ t) (Ht : t ∈ S) : x ∈ ⋃₀ S := exists.intro t (and.intro Ht Hx) theorem not_mem_of_not_mem_sUnion {x : X} {t : set X} {S : set (set X)} (Hx : x ∉ ⋃₀ S) (Ht : t ∈ S) : x ∉ t := suppose x ∈ t, have x ∈ ⋃₀ S, from mem_sUnion this Ht, show false, from Hx this theorem mem_sInter {x : X} {t : set X} {S : set (set X)} (H : ∀₀ t ∈ S, x ∈ t) : x ∈ ⋂₀ S := H theorem sInter_subset_of_mem {S : set (set X)} {t : set X} (tS : t ∈ S) : (⋂₀ S) ⊆ t := take x, assume H, H t tS theorem subset_sUnion_of_mem {S : set (set X)} {t : set X} (tS : t ∈ S) : t ⊆ (⋃₀ S) := take x, assume H, exists.intro t (and.intro tS H) theorem sUnion_empty : ⋃₀ ∅ = (∅ : set X) := eq_empty_of_forall_not_mem (take x, suppose x ∈ sUnion ∅, obtain t [(Ht : t ∈ ∅) Ht'], from this, show false, from Ht) theorem sInter_empty : ⋂₀ ∅ = (univ : set X) := eq_univ_of_forall (λ x s H, false.elim H) theorem sUnion_singleton (s : set X) : ⋃₀ '{s} = s := ext (take x, iff.intro (suppose x ∈ sUnion '{s}, obtain u [(Hu : u ∈ '{s}) (xu : x ∈ u)], from this, have u = s, from eq_of_mem_singleton Hu, show x ∈ s, by rewrite -this; apply xu) (suppose x ∈ s, mem_sUnion this (mem_singleton s))) theorem sInter_singleton (s : set X) : ⋂₀ '{s} = s := ext (take x, iff.intro (suppose x ∈ ⋂₀ '{s}, show x ∈ s, from this (mem_singleton s)) (suppose x ∈ s, take u, suppose u ∈ '{s}, show x ∈ u, by+ rewrite [eq_of_mem_singleton this]; assumption)) theorem sUnion_union (S T : set (set X)) : ⋃₀ (S ∪ T) = ⋃₀ S ∪ ⋃₀ T := ext (take x, iff.intro (suppose x ∈ sUnion (S ∪ T), obtain u [(Hu : u ∈ S ∪ T) (xu : x ∈ u)], from this, or.elim Hu (assume uS, or.inl (mem_sUnion xu uS)) (assume uT, or.inr (mem_sUnion xu uT))) (suppose x ∈ sUnion S ∪ sUnion T, or.elim this (suppose x ∈ sUnion S, obtain u [(uS : u ∈ S) (xu : x ∈ u)], from this, mem_sUnion xu (or.inl uS)) (suppose x ∈ sUnion T, obtain u [(uT : u ∈ T) (xu : x ∈ u)], from this, mem_sUnion xu (or.inr uT)))) theorem sInter_union (S T : set (set X)) : ⋂₀ (S ∪ T) = ⋂₀ S ∩ ⋂₀ T := ext (take x, iff.intro (assume H : x ∈ ⋂₀ (S ∪ T), and.intro (λ u uS, H (or.inl uS)) (λ u uT, H (or.inr uT))) (assume H : x ∈ ⋂₀ S ∩ ⋂₀ T, take u, suppose u ∈ S ∪ T, or.elim this (λ uS, and.left H u uS) (λ uT, and.right H u uT))) theorem sUnion_insert (s : set X) (T : set (set X)) : ⋃₀ (insert s T) = s ∪ ⋃₀ T := by rewrite [insert_eq, sUnion_union, sUnion_singleton] theorem sInter_insert (s : set X) (T : set (set X)) : ⋂₀ (insert s T) = s ∩ ⋂₀ T := by rewrite [insert_eq, sInter_union, sInter_singleton] theorem compl_sUnion (S : set (set X)) : - ⋃₀ S = ⋂₀ (compl ' S) := ext (take x, iff.intro (assume H : x ∈ -(⋃₀ S), take t, suppose t ∈ compl ' S, obtain t' [(Ht' : t' ∈ S) (Ht : -t' = t)], from this, have x ∈ -t', from suppose x ∈ t', H (mem_sUnion this Ht'), show x ∈ t, by rewrite -Ht; apply this) (assume H : x ∈ ⋂₀ (compl ' S), suppose x ∈ ⋃₀ S, obtain t [(tS : t ∈ S) (xt : x ∈ t)], from this, have -t ∈ compl ' S, from mem_image_of_mem compl tS, have x ∈ -t, from H this, show false, proof this xt qed)) theorem sUnion_eq_compl_sInter_compl (S : set (set X)) : ⋃₀ S = - ⋂₀ (compl ' S) := by rewrite [-compl_compl, compl_sUnion] theorem compl_sInter (S : set (set X)) : - ⋂₀ S = ⋃₀ (compl ' S) := by rewrite [sUnion_eq_compl_sInter_compl, compl_compl_image] theorem sInter_eq_comp_sUnion_compl (S : set (set X)) : ⋂₀ S = -(⋃₀ (compl ' S)) := by rewrite [-compl_compl, compl_sInter] theorem inter_sUnion_nonempty_of_inter_nonempty {s t : set X} {S : set (set X)} (Hs : t ∈ S) (Hne : s ∩ t ≠ ∅) : s ∩ ⋃₀ S ≠ ∅ := obtain x Hsx Htx, from exists_mem_of_ne_empty Hne, have x ∈ ⋃₀ S, from mem_sUnion Htx Hs, ne_empty_of_mem (mem_inter Hsx this) theorem sUnion_inter_nonempty_of_inter_nonempty {s t : set X} {S : set (set X)} (Hs : t ∈ S) (Hne : t ∩ s ≠ ∅) : (⋃₀ S) ∩ s ≠ ∅ := obtain x Htx Hsx, from exists_mem_of_ne_empty Hne, have x ∈ ⋃₀ S, from mem_sUnion Htx Hs, ne_empty_of_mem (mem_inter this Hsx) -- Union and Inter: a family of sets indexed by a type theorem Union_subset {I : Type} {b : I → set X} {c : set X} (H : ∀ i, b i ⊆ c) : (⋃ i, b i) ⊆ c := take x, suppose x ∈ Union b, obtain i (Hi : x ∈ b i), from this, show x ∈ c, from H i Hi theorem subset_Inter {I : Type} {b : I → set X} {c : set X} (H : ∀ i, c ⊆ b i) : c ⊆ ⋂ i, b i := λ x cx i, H i cx theorem Union_eq_sUnion_image {X I : Type} (s : I → set X) : (⋃ i, s i) = ⋃₀ (s ' univ) := ext (take x, iff.intro (suppose x ∈ Union s, obtain i (Hi : x ∈ s i), from this, mem_sUnion Hi (mem_image_of_mem s trivial)) (suppose x ∈ sUnion (s ' univ), obtain t [(Ht : t ∈ s ' univ) (Hx : x ∈ t)], from this, obtain i [univi (Hi : s i = t)], from Ht, exists.intro i (show x ∈ s i, by rewrite Hi; apply Hx))) theorem Inter_eq_sInter_image {X I : Type} (s : I → set X) : (⋂ i, s i) = ⋂₀ (s ' univ) := ext (take x, iff.intro (assume H : x ∈ Inter s, take t, suppose t ∈ s 'univ, obtain i [univi (Hi : s i = t)], from this, show x ∈ t, by rewrite -Hi; exact H i) (assume H : x ∈ ⋂₀ (s ' univ), take i, have s i ∈ s ' univ, from mem_image_of_mem s trivial, show x ∈ s i, from H this)) theorem compl_Union {X I : Type} (s : I → set X) : - (⋃ i, s i) = (⋂ i, - s i) := by rewrite [Union_eq_sUnion_image, compl_sUnion, -image_comp, -Inter_eq_sInter_image] theorem compl_Inter {X I : Type} (s : I → set X) : -(⋂ i, s i) = (⋃ i, - s i) := by rewrite [Inter_eq_sInter_image, compl_sInter, -image_comp, -Union_eq_sUnion_image] theorem Union_eq_comp_Inter_comp {X I : Type} (s : I → set X) : (⋃ i, s i) = - (⋂ i, - s i) := by rewrite [-compl_compl, compl_Union] theorem Inter_eq_comp_Union_comp {X I : Type} (s : I → set X) : (⋂ i, s i) = - (⋃ i, -s i) := by rewrite [-compl_compl, compl_Inter] lemma inter_distrib_Union_left {X I : Type} (s : I → set X) (a : set X) : a ∩ (⋃ i, s i) = ⋃ i, a ∩ s i := ext (take x, iff.intro (assume H, obtain i Hi, from and.elim_right H, have x ∈ a ∩ s i, from and.intro (and.elim_left H) Hi, show _, from exists.intro i this) (assume H, obtain i [xa xsi], from H, show _, from and.intro xa (exists.intro i xsi))) section open classical lemma union_distrib_Inter_left {X I : Type} (s : I → set X) (a : set X) : a ∪ (⋂ i, s i) = ⋂ i, a ∪ s i := ext (take x, iff.intro (assume H, or.elim H (assume H1, take i, or.inl H1) (assume H1, take i, or.inr (H1 i))) (assume H, by_cases (suppose x ∈ a, or.inl this) (suppose x ∉ a, or.inr (take i, or.resolve_left (H i) this)))) end -- these are useful for turning binary union / intersection into countable ones definition bin_ext (s t : set X) (n : ℕ) : set X := nat.cases_on n s (λ m, t) lemma Union_bin_ext (s t : set X) : (⋃ i, bin_ext s t i) = s ∪ t := ext (take x, iff.intro (assume H, obtain i (Hi : x ∈ (bin_ext s t) i), from H, by cases i; apply or.inl Hi; apply or.inr Hi) (assume H, or.elim H (suppose x ∈ s, exists.intro 0 this) (suppose x ∈ t, exists.intro 1 this))) lemma Inter_bin_ext (s t : set X) : (⋂ i, bin_ext s t i) = s ∩ t := ext (take x, iff.intro (assume H, and.intro (H 0) (H 1)) (assume H, by intro i; cases i; apply and.elim_left H; apply and.elim_right H)) -- bUnion and bInter: a family of sets indexed by a set ("b" is for bounded) variable {Y : Type} theorem mem_bUnion {s : set X} {f : X → set Y} {x : X} {y : Y} (xs : x ∈ s) (yfx : y ∈ f x) : y ∈ ⋃ x ∈ s, f x := exists.intro x (and.intro xs yfx) theorem mem_bInter {s : set X} {f : X → set Y} {y : Y} (H : ∀₀ x ∈ s, y ∈ f x) : y ∈ ⋂ x ∈ s, f x := H theorem bUnion_subset {s : set X} {t : set Y} {f : X → set Y} (H : ∀₀ x ∈ s, f x ⊆ t) : (⋃ x ∈ s, f x) ⊆ t := take y, assume Hy, obtain x [xs yfx], from Hy, show y ∈ t, from H xs yfx theorem subset_bInter {s : set X} {t : set Y} {f : X → set Y} (H : ∀₀ x ∈ s, t ⊆ f x) : t ⊆ ⋂ x ∈ s, f x := take y, assume yt, take x, assume xs, H xs yt theorem subset_bUnion_of_mem {s : set X} {f : X → set Y} {x : X} (xs : x ∈ s) : f x ⊆ ⋃ x ∈ s, f x := take y, assume Hy, mem_bUnion xs Hy theorem bInter_subset_of_mem {s : set X} {f : X → set Y} {x : X} (xs : x ∈ s) : (⋂ x ∈ s, f x) ⊆ f x := take y, assume Hy, Hy x xs theorem bInter_empty (f : X → set Y) : (⋂ x ∈ (∅ : set X), f x) = univ := eq_univ_of_forall (take y x xine, absurd xine !not_mem_empty) theorem bInter_singleton (a : X) (f : X → set Y) : (⋂ x ∈ '{a}, f x) = f a := ext (take y, iff.intro (assume H, H a !mem_singleton) (assume H, λ x xa, by rewrite [eq_of_mem_singleton xa]; apply H)) theorem bInter_union (s t : set X) (f : X → set Y) : (⋂ x ∈ s ∪ t, f x) = (⋂ x ∈ s, f x) ∩ (⋂ x ∈ t, f x) := ext (take y, iff.intro (assume H, and.intro (λ x xs, H x (or.inl xs)) (λ x xt, H x (or.inr xt))) (assume H, λ x xst, or.elim (xst) (λ xs, and.left H x xs) (λ xt, and.right H x xt))) theorem bInter_insert (a : X) (s : set X) (f : X → set Y) : (⋂ x ∈ insert a s, f x) = f a ∩ (⋂ x ∈ s, f x) := by rewrite [insert_eq, bInter_union, bInter_singleton] theorem bInter_pair (a b : X) (f : X → set Y) : (⋂ x ∈ '{a, b}, f x) = f a ∩ f b := by rewrite [*bInter_insert, bInter_empty, inter_univ] theorem bUnion_empty (f : X → set Y) : (⋃ x ∈ (∅ : set X), f x) = ∅ := eq_empty_of_forall_not_mem (λ y H, obtain x [xine yfx], from H, !not_mem_empty xine) theorem bUnion_singleton (a : X) (f : X → set Y) : (⋃ x ∈ '{a}, f x) = f a := ext (take y, iff.intro (assume H, obtain x [xina yfx], from H, show y ∈ f a, by rewrite [-eq_of_mem_singleton xina]; exact yfx) (assume H, exists.intro a (and.intro !mem_singleton H))) theorem bUnion_union (s t : set X) (f : X → set Y) : (⋃ x ∈ s ∪ t, f x) = (⋃ x ∈ s, f x) ∪ (⋃ x ∈ t, f x) := ext (take y, iff.intro (assume H, obtain x [xst yfx], from H, or.elim xst (λ xs, or.inl (exists.intro x (and.intro xs yfx))) (λ xt, or.inr (exists.intro x (and.intro xt yfx)))) (assume H, or.elim H (assume H1, obtain x [xs yfx], from H1, exists.intro x (and.intro (or.inl xs) yfx)) (assume H1, obtain x [xt yfx], from H1, exists.intro x (and.intro (or.inr xt) yfx)))) theorem bUnion_insert (a : X) (s : set X) (f : X → set Y) : (⋃ x ∈ insert a s, f x) = f a ∪ (⋃ x ∈ s, f x) := by rewrite [insert_eq, bUnion_union, bUnion_singleton] theorem bUnion_pair (a b : X) (f : X → set Y) : (⋃ x ∈ '{a, b}, f x) = f a ∪ f b := by rewrite [*bUnion_insert, bUnion_empty, union_empty] end set