/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad, Andrew Zipperer, Haitao Zhang Functions between subsets of finite types. -/ import .basic open function eq.ops namespace set variables {X Y Z : Type} /- preimages -/ definition preimage {A B:Type} (f : A → B) (Y : set B) : set A := { x | f x ∈ Y } notation f ` '- ` s := preimage f s theorem mem_preimage_iff (f : X → Y) (a : set Y) (x : X) : f x ∈ a ↔ x ∈ f '- a := !iff.refl theorem mem_preimage {f : X → Y} {a : set Y} {x : X} (H : f x ∈ a) : x ∈ f '- a := H theorem mem_of_mem_preimage {f : X → Y} {a : set Y} {x : X} (H : x ∈ f '- a) : f x ∈ a := proof H qed theorem preimage_comp (f : Y → Z) (g : X → Y) (a : set Z) : (f ∘ g) '- a = g '- (f '- a) := ext (take x, !iff.refl) lemma image_subset_iff {A B : Type} {f : A → B} {X : set A} {Y : set B} : f ' X ⊆ Y ↔ X ⊆ f '- Y := @bounded_forall_image_iff A B f X Y theorem preimage_subset {a b : set Y} (f : X → Y) (H : a ⊆ b) : f '- a ⊆ f '- b := λ x H', proof @H (f x) H' qed theorem preimage_id (s : set Y) : (λx, x) '- s = s := ext (take x, !iff.refl) theorem preimage_union (f : X → Y) (s t : set Y) : f '- (s ∪ t) = f '- s ∪ f '- t := ext (take x, !iff.refl) theorem preimage_inter (f : X → Y) (s t : set Y) : f '- (s ∩ t) = f '- s ∩ f '- t := ext (take x, !iff.refl) theorem preimage_compl (f : X → Y) (s : set Y) : f '- (-s) = -(f '- s) := ext (take x, !iff.refl) theorem preimage_diff (f : X → Y) (s t : set Y) : f '- (s \ t) = f '- s \ f '- t := ext (take x, !iff.refl) theorem image_preimage_subset (f : X → Y) (s : set Y) : f ' (f '- s) ⊆ s := take y, suppose y ∈ f ' (f '- s), obtain x [xfis fxeqy], from this, show y ∈ s, by rewrite -fxeqy; exact xfis theorem subset_preimage_image (s : set X) (f : X → Y) : s ⊆ f '- (f ' s) := take x, suppose x ∈ s, show f x ∈ f ' s, from mem_image_of_mem f this theorem inter_preimage_subset (s : set X) (t : set Y) (f : X → Y) : s ∩ f '- t ⊆ f '- (f ' s ∩ t) := take x, assume H : x ∈ s ∩ f '- t, mem_preimage (show f x ∈ f ' s ∩ t, from and.intro (mem_image_of_mem f (and.left H)) (mem_of_mem_preimage (and.right H))) theorem union_preimage_subset (s : set X) (t : set Y) (f : X → Y) : s ∪ f '- t ⊆ f '- (f ' s ∪ t) := take x, assume H : x ∈ s ∪ f '- t, mem_preimage (show f x ∈ f ' s ∪ t, from or.elim H (suppose x ∈ s, or.inl (mem_image_of_mem f this)) (suppose x ∈ f '- t, or.inr (mem_of_mem_preimage this))) theorem image_inter (f : X → Y) (s : set X) (t : set Y) : f ' s ∩ t = f ' (s ∩ f '- t) := ext (take y, iff.intro (suppose y ∈ f ' s ∩ t, obtain [x [xs fxeqy]] yt, from this, have x ∈ s ∩ f '- t, from and.intro xs (mem_preimage (show f x ∈ t, by rewrite fxeqy; exact yt)), mem_image this fxeqy) (suppose y ∈ f ' (s ∩ f '- t), obtain x [[xs xfit] fxeqy], from this, and.intro (mem_image xs fxeqy) (show y ∈ t, by rewrite -fxeqy; exact mem_of_mem_preimage xfit))) theorem image_union_supset (f : X → Y) (s : set X) (t : set Y) : f ' s ∪ t ⊇ f ' (s ∪ f '- t) := take y, assume H, obtain x [xmem fxeqy], from H, or.elim xmem (suppose x ∈ s, or.inl (mem_image this fxeqy)) (suppose x ∈ f '- t, or.inr (show y ∈ t, by+ rewrite -fxeqy; exact mem_of_mem_preimage this)) /- maps to -/ definition maps_to [reducible] (f : X → Y) (a : set X) (b : set Y) : Prop := ∀⦃x⦄, x ∈ a → f x ∈ b theorem maps_to_of_eq_on {f1 f2 : X → Y} {a : set X} {b : set Y} (eq_on_a : eq_on f1 f2 a) (maps_to_f1 : maps_to f1 a b) : maps_to f2 a b := take x, assume xa : x ∈ a, have H : f1 x ∈ b, from maps_to_f1 xa, show f2 x ∈ b, from eq_on_a xa ▸ H theorem maps_to_compose {g : Y → Z} {f : X → Y} {a : set X} {b : set Y} {c : set Z} (H1 : maps_to g b c) (H2 : maps_to f a b) : maps_to (g ∘ f) a c := take x, assume H : x ∈ a, H1 (H2 H) theorem maps_to_univ_univ (f : X → Y) : maps_to f univ univ := take x, assume H, trivial theorem image_subset_of_maps_to_of_subset {f : X → Y} {a : set X} {b : set Y} (mfab : maps_to f a b) {c : set X} (csuba : c ⊆ a) : f ' c ⊆ b := take y, suppose y ∈ f ' c, obtain x [(xc : x ∈ c) (yeq : f x = y)], from this, have x ∈ a, from csuba `x ∈ c`, have f x ∈ b, from mfab this, show y ∈ b, from yeq ▸ this theorem image_subset_of_maps_to {f : X → Y} {a : set X} {b : set Y} (mfab : maps_to f a b) : f ' a ⊆ b := image_subset_of_maps_to_of_subset mfab (subset.refl a) /- injectivity -/ definition inj_on [reducible] (f : X → Y) (a : set X) : Prop := ∀⦃x1 x2 : X⦄, x1 ∈ a → x2 ∈ a → f x1 = f x2 → x1 = x2 theorem inj_on_empty (f : X → Y) : inj_on f ∅ := take x₁ x₂, assume H₁ H₂ H₃, false.elim H₁ theorem inj_on_of_eq_on {f1 f2 : X → Y} {a : set X} (eq_f1_f2 : eq_on f1 f2 a) (inj_f1 : inj_on f1 a) : inj_on f2 a := take x1 x2 : X, assume ax1 : x1 ∈ a, assume ax2 : x2 ∈ a, assume H : f2 x1 = f2 x2, have H' : f1 x1 = f1 x2, from eq_f1_f2 ax1 ⬝ H ⬝ (eq_f1_f2 ax2)⁻¹, show x1 = x2, from inj_f1 ax1 ax2 H' theorem inj_on_compose {g : Y → Z} {f : X → Y} {a : set X} {b : set Y} (fab : maps_to f a b) (Hg : inj_on g b) (Hf: inj_on f a) : inj_on (g ∘ f) a := take x1 x2 : X, assume x1a : x1 ∈ a, assume x2a : x2 ∈ a, have fx1b : f x1 ∈ b, from fab x1a, have fx2b : f x2 ∈ b, from fab x2a, assume H1 : g (f x1) = g (f x2), have H2 : f x1 = f x2, from Hg fx1b fx2b H1, show x1 = x2, from Hf x1a x2a H2 theorem inj_on_of_inj_on_of_subset {f : X → Y} {a b : set X} (H1 : inj_on f b) (H2 : a ⊆ b) : inj_on f a := take x1 x2 : X, assume (x1a : x1 ∈ a) (x2a : x2 ∈ a), assume H : f x1 = f x2, show x1 = x2, from H1 (H2 x1a) (H2 x2a) H lemma injective_iff_inj_on_univ {f : X → Y} : injective f ↔ inj_on f univ := iff.intro (assume H, take x₁ x₂, assume ax₁ ax₂, H x₁ x₂) (assume H : inj_on f univ, take x₁ x₂ Heq, show x₁ = x₂, from H trivial trivial Heq) /- surjectivity -/ definition surj_on [reducible] (f : X → Y) (a : set X) (b : set Y) : Prop := b ⊆ f ' a theorem surj_on_of_eq_on {f1 f2 : X → Y} {a : set X} {b : set Y} (eq_f1_f2 : eq_on f1 f2 a) (surj_f1 : surj_on f1 a b) : surj_on f2 a b := take y, assume H : y ∈ b, obtain x (H1 : x ∈ a ∧ f1 x = y), from surj_f1 H, have H2 : x ∈ a, from and.left H1, have H3 : f2 x = y, from (eq_f1_f2 H2)⁻¹ ⬝ and.right H1, exists.intro x (and.intro H2 H3) theorem surj_on_compose {g : Y → Z} {f : X → Y} {a : set X} {b : set Y} {c : set Z} (Hg : surj_on g b c) (Hf: surj_on f a b) : surj_on (g ∘ f) a c := take z, assume zc : z ∈ c, obtain y (H1 : y ∈ b ∧ g y = z), from Hg zc, obtain x (H2 : x ∈ a ∧ f x = y), from Hf (and.left H1), show ∃x, x ∈ a ∧ g (f x) = z, from exists.intro x (and.intro (and.left H2) (calc g (f x) = g y : {and.right H2} ... = z : and.right H1)) lemma surjective_iff_surj_on_univ {f : X → Y} : surjective f ↔ surj_on f univ univ := iff.intro (assume H, take y, assume Hy, obtain x Hx, from H y, mem_image trivial Hx) (assume H, take y, obtain x H1x H2x, from H y trivial, exists.intro x H2x) lemma image_eq_of_maps_to_of_surj_on {f : X → Y} {a : set X} {b : set Y} (H1 : maps_to f a b) (H2 : surj_on f a b) : f ' a = b := eq_of_subset_of_subset (image_subset_of_maps_to H1) H2 /- bijectivity -/ definition bij_on [reducible] (f : X → Y) (a : set X) (b : set Y) : Prop := maps_to f a b ∧ inj_on f a ∧ surj_on f a b lemma maps_to_of_bij_on {f : X → Y} {a : set X} {b : set Y} (H : bij_on f a b) : maps_to f a b := and.left H lemma inj_on_of_bij_on {f : X → Y} {a : set X} {b : set Y} (H : bij_on f a b) : inj_on f a := and.left (and.right H) lemma surj_on_of_bij_on {f : X → Y} {a : set X} {b : set Y} (H : bij_on f a b) : surj_on f a b := and.right (and.right H) lemma bij_on.mk {f : X → Y} {a : set X} {b : set Y} (H₁ : maps_to f a b) (H₂ : inj_on f a) (H₃ : surj_on f a b) : bij_on f a b := and.intro H₁ (and.intro H₂ H₃) theorem bij_on_of_eq_on {f1 f2 : X → Y} {a : set X} {b : set Y} (eqf : eq_on f1 f2 a) (H : bij_on f1 a b) : bij_on f2 a b := match H with and.intro Hmap (and.intro Hinj Hsurj) := and.intro (maps_to_of_eq_on eqf Hmap) (and.intro (inj_on_of_eq_on eqf Hinj) (surj_on_of_eq_on eqf Hsurj)) end lemma image_eq_of_bij_on {f : X → Y} {a : set X} {b : set Y} (bfab : bij_on f a b) : f ' a = b := image_eq_of_maps_to_of_surj_on (and.left bfab) (and.right (and.right bfab)) theorem bij_on_compose {g : Y → Z} {f : X → Y} {a : set X} {b : set Y} {c : set Z} (Hg : bij_on g b c) (Hf: bij_on f a b) : bij_on (g ∘ f) a c := match Hg with and.intro Hgmap (and.intro Hginj Hgsurj) := match Hf with and.intro Hfmap (and.intro Hfinj Hfsurj) := and.intro (maps_to_compose Hgmap Hfmap) (and.intro (inj_on_compose Hfmap Hginj Hfinj) (surj_on_compose Hgsurj Hfsurj)) end end lemma bijective_iff_bij_on_univ {f : X → Y} : bijective f ↔ bij_on f univ univ := iff.intro (assume H, obtain Hinj Hsurj, from H, and.intro (maps_to_univ_univ f) (and.intro (iff.mp !injective_iff_inj_on_univ Hinj) (iff.mp !surjective_iff_surj_on_univ Hsurj))) (assume H, obtain Hmaps Hinj Hsurj, from H, (and.intro (iff.mpr !injective_iff_inj_on_univ Hinj) (iff.mpr !surjective_iff_surj_on_univ Hsurj))) /- left inverse -/ -- g is a left inverse to f on a definition left_inv_on [reducible] (g : Y → X) (f : X → Y) (a : set X) : Prop := ∀₀ x ∈ a, g (f x) = x theorem left_inv_on_of_eq_on_left {g1 g2 : Y → X} {f : X → Y} {a : set X} {b : set Y} (fab : maps_to f a b) (eqg : eq_on g1 g2 b) (H : left_inv_on g1 f a) : left_inv_on g2 f a := take x, assume xa : x ∈ a, calc g2 (f x) = g1 (f x) : (eqg (fab xa))⁻¹ ... = x : H xa theorem left_inv_on_of_eq_on_right {g : Y → X} {f1 f2 : X → Y} {a : set X} (eqf : eq_on f1 f2 a) (H : left_inv_on g f1 a) : left_inv_on g f2 a := take x, assume xa : x ∈ a, calc g (f2 x) = g (f1 x) : {(eqf xa)⁻¹} ... = x : H xa theorem inj_on_of_left_inv_on {g : Y → X} {f : X → Y} {a : set X} (H : left_inv_on g f a) : inj_on f a := take x1 x2, assume x1a : x1 ∈ a, assume x2a : x2 ∈ a, assume H1 : f x1 = f x2, calc x1 = g (f x1) : H x1a ... = g (f x2) : H1 ... = x2 : H x2a theorem left_inv_on_compose {f' : Y → X} {g' : Z → Y} {g : Y → Z} {f : X → Y} {a : set X} {b : set Y} (fab : maps_to f a b) (Hf : left_inv_on f' f a) (Hg : left_inv_on g' g b) : left_inv_on (f' ∘ g') (g ∘ f) a := take x : X, assume xa : x ∈ a, have fxb : f x ∈ b, from fab xa, calc f' (g' (g (f x))) = f' (f x) : Hg fxb ... = x : Hf xa /- right inverse -/ -- g is a right inverse to f on a definition right_inv_on [reducible] (g : Y → X) (f : X → Y) (b : set Y) : Prop := left_inv_on f g b theorem right_inv_on_of_eq_on_left {g1 g2 : Y → X} {f : X → Y} {a : set X} {b : set Y} (eqg : eq_on g1 g2 b) (H : right_inv_on g1 f b) : right_inv_on g2 f b := left_inv_on_of_eq_on_right eqg H theorem right_inv_on_of_eq_on_right {g : Y → X} {f1 f2 : X → Y} {a : set X} {b : set Y} (gba : maps_to g b a) (eqf : eq_on f1 f2 a) (H : right_inv_on g f1 b) : right_inv_on g f2 b := left_inv_on_of_eq_on_left gba eqf H theorem surj_on_of_right_inv_on {g : Y → X} {f : X → Y} {a : set X} {b : set Y} (gba : maps_to g b a) (H : right_inv_on g f b) : surj_on f a b := take y, assume yb : y ∈ b, have gya : g y ∈ a, from gba yb, have H1 : f (g y) = y, from H yb, exists.intro (g y) (and.intro gya H1) theorem right_inv_on_compose {f' : Y → X} {g' : Z → Y} {g : Y → Z} {f : X → Y} {c : set Z} {b : set Y} (g'cb : maps_to g' c b) (Hf : right_inv_on f' f b) (Hg : right_inv_on g' g c) : right_inv_on (f' ∘ g') (g ∘ f) c := left_inv_on_compose g'cb Hg Hf theorem right_inv_on_of_inj_on_of_left_inv_on {f : X → Y} {g : Y → X} {a : set X} {b : set Y} (fab : maps_to f a b) (gba : maps_to g b a) (injf : inj_on f a) (lfg : left_inv_on f g b) : right_inv_on f g a := take x, assume xa : x ∈ a, have H : f (g (f x)) = f x, from lfg (fab xa), injf (gba (fab xa)) xa H theorem eq_on_of_left_inv_of_right_inv {g1 g2 : Y → X} {f : X → Y} {a : set X} {b : set Y} (g2ba : maps_to g2 b a) (Hg1 : left_inv_on g1 f a) (Hg2 : right_inv_on g2 f b) : eq_on g1 g2 b := take y, assume yb : y ∈ b, calc g1 y = g1 (f (g2 y)) : {(Hg2 yb)⁻¹} ... = g2 y : Hg1 (g2ba yb) theorem left_inv_on_of_surj_on_right_inv_on {f : X → Y} {g : Y → X} {a : set X} {b : set Y} (surjf : surj_on f a b) (rfg : right_inv_on f g a) : left_inv_on f g b := take y, assume yb : y ∈ b, obtain x (xa : x ∈ a) (Hx : f x = y), from surjf yb, calc f (g y) = f (g (f x)) : Hx ... = f x : rfg xa ... = y : Hx /- inverses -/ -- g is an inverse to f viewed as a map from a to b definition inv_on [reducible] (g : Y → X) (f : X → Y) (a : set X) (b : set Y) : Prop := left_inv_on g f a ∧ right_inv_on g f b theorem bij_on_of_inv_on {g : Y → X} {f : X → Y} {a : set X} {b : set Y} (fab : maps_to f a b) (gba : maps_to g b a) (H : inv_on g f a b) : bij_on f a b := and.intro fab (and.intro (inj_on_of_left_inv_on (and.left H)) (surj_on_of_right_inv_on gba (and.right H))) end set