variable A : Type.{1} definition [inline] bool : Type.{1} := Type.{0} variable eq : A → A → bool infixl `=` 50 := eq axiom subst (P : A → bool) (a b : A) (H1 : a = b) (H2 : P a) : P b axiom eq_trans (a b c : A) (H1 : a = b) (H2 : b = c) : a = c axiom eq_refl (a : A) : a = a variable le : A → A → bool infixl `≤` 50 := le axiom le_trans (a b c : A) (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c axiom le_refl (a : A) : a ≤ a axiom eq_le_trans (a b c : A) (H1 : a = b) (H2 : b ≤ c) : a ≤ c axiom le_eq_trans (a b c : A) (H1 : a ≤ b) (H2 : b = c) : a ≤ c calc_subst subst calc_refl eq_refl calc_refl le_refl calc_trans eq_trans calc_trans le_trans calc_trans eq_le_trans calc_trans le_eq_trans variables a b c d e f : A axiom H1 : a = b axiom H2 : b ≤ c axiom H3 : c ≤ d axiom H4 : d = e check calc a = b : H1 ... ≤ c : H2 ... ≤ d : H3 ... = e : H4 variable lt : A → A → bool infixl `<` 50 := lt axiom lt_trans (a b c : A) (H1 : a < b) (H2 : b < c) : a < c axiom le_lt_trans (a b c : A) (H1 : a ≤ b) (H2 : b < c) : a < c axiom lt_le_trans (a b c : A) (H1 : a < b) (H2 : b ≤ c) : a < c axiom H5 : c < d check calc b ≤ c : H2 ... < d : H5 -- Error le_lt_trans was not registered yet calc_trans le_lt_trans check calc b ≤ c : H2 ... < d : H5 variable le2 : A → A → bool infixl `≤` 50 := le2 variable le2_trans (a b c : A) (H1 : le2 a b) (H2 : le2 b c) : le2 a c calc_trans le2_trans print raw calc b ≤ c : H2 ... ≤ d : H3 ... ≤ e : H4