/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.rat.basic Author: Jeremy Avigad The rational numbers as a field generated by the integers, defined as the usual quotient. -/ import data.int algebra.field open int quot eq.ops record prerat : Type := (num : ℤ) (denom : ℤ) (denom_pos : denom > 0) /- prerat: the representations of the rationals as integers num, denom, with denom > 0. note: names are not protected, because it is not expected that users will open prerat. -/ namespace prerat /- the equivalence relation -/ definition equiv (a b : prerat) : Prop := num a * denom b = num b * denom a infix `≡` := equiv theorem equiv.refl [refl] (a : prerat) : a ≡ a := rfl theorem equiv.symm [symm] {a b : prerat} (H : a ≡ b) : b ≡ a := !eq.symm H theorem num_eq_zero_of_equiv {a b : prerat} (H : a ≡ b) (na_zero : num a = 0) : num b = 0 := have H1 : num a * denom b = 0, from !zero_mul ▸ na_zero ▸ rfl, have H2 : num b * denom a = 0, from H ▸ H1, show num b = 0, from or_resolve_left (eq_zero_or_eq_zero_of_mul_eq_zero H2) (ne_of_gt (denom_pos a)) theorem num_pos_of_equiv {a b : prerat} (H : a ≡ b) (na_pos : num a > 0) : num b > 0 := have H1 : num a * denom b > 0, from mul_pos na_pos (denom_pos b), have H2 : num b * denom a > 0, from H ▸ H1, show num b > 0, from pos_of_mul_pos_right H2 (le_of_lt (denom_pos a)) theorem num_neg_of_equiv {a b : prerat} (H : a ≡ b) (na_neg : num a < 0) : num b < 0 := have H1 : num a * denom b < 0, from mul_neg_of_neg_of_pos na_neg (denom_pos b), have H2 : -(-num b * denom a) < 0, from !neg_mul_eq_neg_mul⁻¹ ▸ !neg_neg⁻¹ ▸ H ▸ H1, have H3 : -num b > 0, from pos_of_mul_pos_right (pos_of_neg_neg H2) (le_of_lt (denom_pos a)), neg_of_neg_pos H3 theorem equiv_of_num_eq_zero {a b : prerat} (H1 : num a = 0) (H2 : num b = 0) : a ≡ b := by rewrite [↑equiv, H1, H2, *zero_mul] theorem equiv.trans [trans] {a b c : prerat} (H1 : a ≡ b) (H2 : b ≡ c) : a ≡ c := decidable.by_cases (assume b0 : num b = 0, have a0 : num a = 0, from num_eq_zero_of_equiv (equiv.symm H1) b0, have c0 : num c = 0, from num_eq_zero_of_equiv H2 b0, equiv_of_num_eq_zero a0 c0) (assume bn0 : num b ≠ 0, have H3 : num b * denom b ≠ 0, from mul_ne_zero bn0 (ne_of_gt (denom_pos b)), have H4 : (num b * denom b) * (num a * denom c) = (num b * denom b) * (num c * denom a), from calc (num b * denom b) * (num a * denom c) = (num a * denom b) * (num b * denom c) : by rewrite [*mul.assoc, *mul.left_comm (num a), *mul.left_comm (num b)] ... = (num b * denom a) * (num b * denom c) : {H1} ... = (num b * denom a) * (num c * denom b) : {H2} ... = (num b * denom b) * (num c * denom a) : by rewrite [*mul.assoc, *mul.left_comm (denom a), *mul.left_comm (denom b), mul.comm (denom a)], mul.cancel_left H3 H4) theorem equiv.is_equivalence : equivalence equiv := mk_equivalence equiv equiv.refl @equiv.symm @equiv.trans definition setoid : setoid prerat := setoid.mk equiv equiv.is_equivalence /- field operations -/ private theorem of_nat_succ_pos (n : nat) : of_nat (nat.succ n) > 0 := of_nat_pos !nat.succ_pos definition of_int (i : int) : prerat := prerat.mk i 1 !of_nat_succ_pos definition zero : prerat := of_int 0 definition one : prerat := of_int 1 private theorem mul_denom_pos (a b : prerat) : denom a * denom b > 0 := mul_pos (denom_pos a) (denom_pos b) definition add (a b : prerat) : prerat := prerat.mk (num a * denom b + num b * denom a) (denom a * denom b) (mul_denom_pos a b) definition mul (a b : prerat) : prerat := prerat.mk (num a * num b) (denom a * denom b) (mul_denom_pos a b) definition neg (a : prerat) : prerat := prerat.mk (- num a) (denom a) (denom_pos a) definition inv : prerat → prerat | inv (prerat.mk nat.zero d dp) := zero | inv (prerat.mk (nat.succ n) d dp) := prerat.mk d (nat.succ n) !of_nat_succ_pos | inv (prerat.mk -[n +1] d dp) := prerat.mk (-d) (nat.succ n) !of_nat_succ_pos theorem equiv_zero_of_num_eq_zero {a : prerat} (H : num a = 0) : a ≡ zero := by rewrite [↑equiv, H, ↑zero, ↑num, ↑of_int, *zero_mul] theorem num_eq_zero_of_equiv_zero {a : prerat} : a ≡ zero → num a = 0 := by rewrite [↑equiv, ↑zero, ↑of_int, mul_one, zero_mul]; intro H; exact H theorem inv_zero {d : int} (dp : d > 0) : inv (mk nat.zero d dp) = zero := begin rewrite [↑inv, ↑int.cases_on, ↑cases_on, ▸*] end theorem inv_zero' : inv zero = zero := inv_zero (of_nat_succ_pos nat.zero) theorem inv_of_pos {n d : int} (np : n > 0) (dp : d > 0) : inv (mk n d dp) ≡ mk d n np := obtain (n' : nat) (Hn' : n = of_nat n'), from exists_eq_of_nat (le_of_lt np), have H1 : (#nat n' > nat.zero), from lt_of_of_nat_lt_of_nat (Hn' ▸ np), obtain (k : nat) (Hk : n' = nat.succ k), from nat.exists_eq_succ_of_lt H1, have H2 : d * n = d * nat.succ k, by rewrite [Hn', Hk], Hn'⁻¹ ▸ (Hk⁻¹ ▸ H2) theorem inv_neg {n d : int} (np : n > 0) (dp : d > 0) : inv (mk (-n) d dp) ≡ mk (-d) n np := obtain (n' : nat) (Hn' : n = of_nat n'), from exists_eq_of_nat (le_of_lt np), have H1 : (#nat n' > nat.zero), from lt_of_of_nat_lt_of_nat (Hn' ▸ np), obtain (k : nat) (Hk : n' = nat.succ k), from nat.exists_eq_succ_of_lt H1, have H2 : -d * n = -d * nat.succ k, by rewrite [Hn', Hk], have H3 : inv (mk -[k +1] d dp) ≡ mk (-d) n np, from H2, have H4 : -[k +1] = -n, from calc -[k +1] = -(nat.succ k) : rfl ... = -n : by rewrite [Hk⁻¹, Hn'], H4 ▸ H3 theorem inv_of_neg {n d : int} (nn : n < 0) (dp : d > 0) : inv (mk n d dp) ≡ mk (-d) (-n) (neg_pos_of_neg nn) := have H : inv (mk (-(-n)) d dp) ≡ mk (-d) (-n) (neg_pos_of_neg nn), from inv_neg (neg_pos_of_neg nn) dp, !neg_neg ▸ H /- operations respect equiv -/ theorem add_equiv_add {a1 b1 a2 b2 : prerat} (eqv1 : a1 ≡ a2) (eqv2 : b1 ≡ b2) : add a1 b1 ≡ add a2 b2 := calc (num a1 * denom b1 + num b1 * denom a1) * (denom a2 * denom b2) = num a1 * denom a2 * denom b1 * denom b2 + num b1 * denom b2 * denom a1 * denom a2 : by rewrite [mul.right_distrib, *mul.assoc, mul.left_comm (denom b1), mul.comm (denom b2), *mul.assoc] ... = num a2 * denom a1 * denom b1 * denom b2 + num b2 * denom b1 * denom a1 * denom a2 : by rewrite [↑equiv at *, eqv1, eqv2] ... = (num a2 * denom b2 + num b2 * denom a2) * (denom a1 * denom b1) : by rewrite [mul.right_distrib, *mul.assoc, *mul.left_comm (denom b2), *mul.comm (denom b1), *mul.assoc, mul.left_comm (denom a2)] theorem mul_equiv_mul {a1 b1 a2 b2 : prerat} (eqv1 : a1 ≡ a2) (eqv2 : b1 ≡ b2) : mul a1 b1 ≡ mul a2 b2 := calc (num a1 * num b1) * (denom a2 * denom b2) = (num a1 * denom a2) * (num b1 * denom b2) : by rewrite [*mul.assoc, mul.left_comm (num b1)] ... = (num a2 * denom a1) * (num b2 * denom b1) : by rewrite [↑equiv at *, eqv1, eqv2] ... = (num a2 * num b2) * (denom a1 * denom b1) : by rewrite [*mul.assoc, mul.left_comm (num b2)] theorem neg_equiv_neg {a b : prerat} (eqv : a ≡ b) : neg a ≡ neg b := calc -num a * denom b = -(num a * denom b) : neg_mul_eq_neg_mul ... = -(num b * denom a) : {eqv} ... = -num b * denom a : neg_mul_eq_neg_mul theorem inv_equiv_inv : ∀{a b : prerat}, a ≡ b → inv a ≡ inv b | (mk an ad adp) (mk bn bd bdp) := assume H, lt.by_cases (assume an_neg : an < 0, have bn_neg : bn < 0, from num_neg_of_equiv H an_neg, calc inv (mk an ad adp) ≡ mk (-ad) (-an) (neg_pos_of_neg an_neg) : inv_of_neg an_neg adp ... ≡ mk (-bd) (-bn) (neg_pos_of_neg bn_neg) : by rewrite [↑equiv at *, ▸*, *neg_mul_neg, mul.comm ad, mul.comm bd, H] ... ≡ inv (mk bn bd bdp) : inv_of_neg bn_neg bdp) (assume an_zero : an = 0, have bn_zero : bn = 0, from num_eq_zero_of_equiv H an_zero, eq.subst (calc inv (mk an ad adp) = inv (mk 0 ad adp) : {an_zero} ... = zero : inv_zero ... = inv (mk 0 bd bdp) : inv_zero ... = inv (mk bn bd bdp) : bn_zero) !equiv.refl) (assume an_pos : an > 0, have bn_pos : bn > 0, from num_pos_of_equiv H an_pos, calc inv (mk an ad adp) ≡ mk ad an an_pos : inv_of_pos an_pos adp ... ≡ mk bd bn bn_pos : by rewrite [↑equiv at *, ▸*, mul.comm ad, mul.comm bd, H] ... ≡ inv (mk bn bd bdp) : inv_of_pos bn_pos bdp) /- properties -/ theorem add.comm (a b : prerat) : add a b ≡ add b a := by rewrite [↑add, ↑equiv, ▸*, add.comm, mul.comm (denom a)] theorem add.assoc (a b c : prerat) : add (add a b) c ≡ add a (add b c) := by rewrite [↑add, ↑equiv, ▸*, *(mul.comm (num c)), *(λy, mul.comm y (denom a)), *mul.left_distrib, *mul.right_distrib, *mul.assoc, *add.assoc] theorem add_zero (a : prerat) : add a zero ≡ a := by rewrite [↑add, ↑equiv, ↑zero, ↑of_int, ▸*, *mul_one, zero_mul, add_zero] theorem add.left_inv (a : prerat) : add (neg a) a ≡ zero := by rewrite [↑add, ↑equiv, ↑neg, ↑zero, ↑of_int, ▸*, -neg_mul_eq_neg_mul, add.left_inv, *zero_mul] theorem mul.comm (a b : prerat) : mul a b ≡ mul b a := by rewrite [↑mul, ↑equiv, mul.comm (num a), mul.comm (denom a)] theorem mul.assoc (a b c : prerat) : mul (mul a b) c ≡ mul a (mul b c) := by rewrite [↑mul, ↑equiv, *mul.assoc] theorem mul_one (a : prerat) : mul a one ≡ a := by rewrite [↑mul, ↑one, ↑of_int, ↑equiv, ▸*, *mul_one] -- with the simplifier this will be easy theorem mul.left_distrib (a b c : prerat) : mul a (add b c) ≡ add (mul a b) (mul a c) := begin rewrite [↑mul, ↑add, ↑equiv, ▸*, *mul.left_distrib, *mul.right_distrib, -*int.mul.assoc], apply sorry end theorem mul_inv_cancel : ∀{a : prerat}, ¬ a ≡ zero → mul a (inv a) ≡ one | (mk an ad adp) := assume H, let a := mk an ad adp in lt.by_cases (assume an_neg : an < 0, let ia := mk (-ad) (-an) (neg_pos_of_neg an_neg) in calc mul a (inv a) ≡ mul a ia : mul_equiv_mul !equiv.refl (inv_of_neg an_neg adp) ... ≡ one : begin esimp [equiv, num, denom, one, mul, of_int], rewrite [*int.mul_one, *int.one_mul, int.mul.comm, neg_mul_comm] end) (assume an_zero : an = 0, absurd (equiv_zero_of_num_eq_zero an_zero) H) (assume an_pos : an > 0, let ia := mk ad an an_pos in calc mul a (inv a) ≡ mul a ia : mul_equiv_mul !equiv.refl (inv_of_pos an_pos adp) ... ≡ one : begin esimp [equiv, num, denom, one, mul, of_int], rewrite [*int.mul_one, *int.one_mul, int.mul.comm] end) theorem zero_not_equiv_one : ¬ zero ≡ one := begin esimp [equiv, zero, one, of_int], rewrite [zero_mul, int.mul_one], exact zero_ne_one end end prerat /- the rationals -/ definition rat : Type.{1} := quot prerat.setoid notation `ℚ` := rat local attribute prerat.setoid [instance] namespace rat /- operations -/ -- these coercions do not work: rat is not an inductive type definition of_int [coercion] (i : ℤ) : ℚ := ⟦prerat.of_int i⟧ definition of_nat [coercion] (n : ℕ) : ℚ := ⟦prerat.of_int n⟧ definition of_num [coercion] [reducible] (n : num) : ℚ := of_int (int.of_num n) definition add : ℚ → ℚ → ℚ := quot.lift₂ (λa b : prerat, ⟦prerat.add a b⟧) (take a1 a2 b1 b2, assume H1 H2, quot.sound (prerat.add_equiv_add H1 H2)) definition mul : ℚ → ℚ → ℚ := quot.lift₂ (λa b : prerat, ⟦prerat.mul a b⟧) (take a1 a2 b1 b2, assume H1 H2, quot.sound (prerat.mul_equiv_mul H1 H2)) definition neg : ℚ → ℚ := quot.lift (λa : prerat, ⟦prerat.neg a⟧) (take a1 a2, assume H, quot.sound (prerat.neg_equiv_neg H)) definition inv : ℚ → ℚ := quot.lift (λa : prerat, ⟦prerat.inv a⟧) (take a1 a2, assume H, quot.sound (prerat.inv_equiv_inv H)) definition zero := ⟦prerat.zero⟧ definition one := ⟦prerat.one⟧ infix `+` := rat.add infix `*` := rat.mul prefix `-` := rat.neg postfix `⁻¹` := rat.inv definition sub (a b : rat) : rat := a + (-b) infix `-` := rat.sub -- TODO: this is a workaround, since the coercions from numerals do not work notation 0 := zero notation 1 := one /- properties -/ theorem add.comm (a b : ℚ) : a + b = b + a := quot.induction_on₂ a b (take u v, quot.sound !prerat.add.comm) theorem add.assoc (a b c : ℚ) : a + b + c = a + (b + c) := quot.induction_on₃ a b c (take u v w, quot.sound !prerat.add.assoc) theorem add_zero (a : ℚ) : a + 0 = a := quot.induction_on a (take u, quot.sound !prerat.add_zero) theorem zero_add (a : ℚ) : 0 + a = a := !add.comm ▸ !add_zero theorem add.left_inv (a : ℚ) : -a + a = 0 := quot.induction_on a (take u, quot.sound !prerat.add.left_inv) theorem mul.comm (a b : ℚ) : a * b = b * a := quot.induction_on₂ a b (take u v, quot.sound !prerat.mul.comm) theorem mul.assoc (a b c : ℚ) : a * b * c = a * (b * c) := quot.induction_on₃ a b c (take u v w, quot.sound !prerat.mul.assoc) theorem mul_one (a : ℚ) : a * 1 = a := quot.induction_on a (take u, quot.sound !prerat.mul_one) theorem one_mul (a : ℚ) : 1 * a = a := !mul.comm ▸ !mul_one theorem mul.left_distrib (a b c : ℚ) : a * (b + c) = a * b + a * c := quot.induction_on₃ a b c (take u v w, quot.sound !prerat.mul.left_distrib) theorem mul.right_distrib (a b c : ℚ) : (a + b) * c = a * c + b * c := by rewrite [mul.comm, mul.left_distrib, *mul.comm c] theorem mul_inv_cancel {a : ℚ} : a ≠ 0 → a * a⁻¹ = 1 := quot.induction_on a (take u, assume H, quot.sound (!prerat.mul_inv_cancel (assume H1, H (quot.sound H1)))) theorem inv_mul_cancel {a : ℚ} (H : a ≠ 0) : a⁻¹ * a = 1 := !mul.comm ▸ mul_inv_cancel H theorem zero_ne_one : (#rat 0 ≠ 1) := assume H, prerat.zero_not_equiv_one (quot.exact H) definition has_decidable_eq [instance] : decidable_eq ℚ := take a b, quot.rec_on_subsingleton₂ a b (take u v, if H : prerat.num u * prerat.denom v = prerat.num v * prerat.denom u then decidable.inl (quot.sound H) else decidable.inr (assume H1, H (quot.exact H1))) theorem inv_zero : inv 0 = 0 := quot.sound (prerat.inv_zero' ▸ !prerat.equiv.refl) section open [classes] algebra protected definition discrete_field [instance] [reducible] : algebra.discrete_field rat := ⦃algebra.discrete_field, add := add, add_assoc := add.assoc, zero := 0, zero_add := zero_add, add_zero := add_zero, neg := neg, add_left_inv := add.left_inv, add_comm := add.comm, mul := mul, mul_assoc := mul.assoc, one := (of_num 1), one_mul := one_mul, mul_one := mul_one, left_distrib := mul.left_distrib, right_distrib := mul.right_distrib, mul_comm := mul.comm, mul_inv_cancel := @mul_inv_cancel, inv_mul_cancel := @inv_mul_cancel, zero_ne_one := zero_ne_one, inv_zero := inv_zero, has_decidable_eq := has_decidable_eq⦄ migrate from algebra with rat replacing sub → rat.sub end end rat