/- Copyright (c) 2015 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Properties of trunc_index, is_trunc, trunctype, trunc, and the pointed versions of these -/ -- NOTE: the fact that (is_trunc n A) is a mere proposition is proved in .prop_trunc import .pointed ..function algebra.order types.nat.order open eq sigma sigma.ops pi function equiv trunctype is_equiv prod pointed nat is_trunc algebra sum /- basic computation with ℕ₋₂, its operations and its order -/ namespace trunc_index definition minus_one_le_succ (n : ℕ₋₂) : -1 ≤ n.+1 := succ_le_succ (minus_two_le n) definition zero_le_of_nat (n : ℕ) : 0 ≤ of_nat n := succ_le_succ !minus_one_le_succ open decidable protected definition has_decidable_eq [instance] : Π(n m : ℕ₋₂), decidable (n = m) | has_decidable_eq -2 -2 := inl rfl | has_decidable_eq (n.+1) -2 := inr (by contradiction) | has_decidable_eq -2 (m.+1) := inr (by contradiction) | has_decidable_eq (n.+1) (m.+1) := match has_decidable_eq n m with | inl xeqy := inl (by rewrite xeqy) | inr xney := inr (λ h : succ n = succ m, by injection h with xeqy; exact absurd xeqy xney) end definition not_succ_le_minus_two {n : ℕ₋₂} (H : n .+1 ≤ -2) : empty := by cases H protected definition le_trans {n m k : ℕ₋₂} (H1 : n ≤ m) (H2 : m ≤ k) : n ≤ k := begin induction H2 with k H2 IH, { exact H1}, { exact le.step IH} end definition le_of_succ_le_succ {n m : ℕ₋₂} (H : n.+1 ≤ m.+1) : n ≤ m := begin cases H with m H', { apply le.tr_refl}, { exact trunc_index.le_trans (le.step !le.tr_refl) H'} end theorem not_succ_le_self {n : ℕ₋₂} : ¬n.+1 ≤ n := begin induction n with n IH: intro H, { exact not_succ_le_minus_two H}, { exact IH (le_of_succ_le_succ H)} end protected definition le_antisymm {n m : ℕ₋₂} (H1 : n ≤ m) (H2 : m ≤ n) : n = m := begin induction H2 with n H2 IH, { reflexivity}, { exfalso, apply @not_succ_le_self n, exact trunc_index.le_trans H1 H2} end protected definition le_succ {n m : ℕ₋₂} (H1 : n ≤ m) : n ≤ m.+1 := le.step H1 protected definition self_le_succ (n : ℕ₋₂) : n ≤ n.+1 := le.step (trunc_index.le.tr_refl n) -- the order is total protected theorem le_sum_le (n m : ℕ₋₂) : n ≤ m ⊎ m ≤ n := begin induction m with m IH, { exact inr !minus_two_le}, { cases IH with H H, { exact inl (trunc_index.le_succ H)}, { cases H with n' H, { exact inl !trunc_index.self_le_succ}, { exact inr (succ_le_succ H)}}} end end trunc_index open trunc_index definition linear_weak_order_trunc_index [trans_instance] [reducible] : linear_weak_order trunc_index := linear_weak_order.mk le trunc_index.le.tr_refl @trunc_index.le_trans @trunc_index.le_antisymm trunc_index.le_sum_le namespace trunc_index /- more theorems about truncation indices -/ definition zero_add (n : ℕ₋₂) : (0 : ℕ₋₂) + n = n := begin cases n with n, reflexivity, cases n with n, reflexivity, induction n with n IH, reflexivity, exact ap succ IH end definition add_zero (n : ℕ₋₂) : n + (0 : ℕ₋₂) = n := by reflexivity definition succ_add_nat (n : ℕ₋₂) (m : ℕ) : n.+1 + m = (n + m).+1 := by induction m with m IH; reflexivity; exact ap succ IH definition nat_add_succ (n : ℕ) (m : ℕ₋₂) : n + m.+1 = (n + m).+1 := begin cases m with m, reflexivity, cases m with m, reflexivity, induction m with m IH, reflexivity, exact ap succ IH end definition add_nat_succ (n : ℕ₋₂) (m : ℕ) : n + (nat.succ m) = (n + m).+1 := by reflexivity definition nat_succ_add (n : ℕ) (m : ℕ₋₂) : (nat.succ n) + m = (n + m).+1 := begin cases m with m, reflexivity, cases m with m, reflexivity, induction m with m IH, reflexivity, exact ap succ IH end definition sub_two_add_two (n : ℕ₋₂) : sub_two (add_two n) = n := begin induction n with n IH, { reflexivity}, { exact ap succ IH} end definition add_two_sub_two (n : ℕ) : add_two (sub_two n) = n := begin induction n with n IH, { reflexivity}, { exact ap nat.succ IH} end definition of_nat_add_plus_two_of_nat (n m : ℕ) : n +2+ m = of_nat (n + m + 2) := begin induction m with m IH, { reflexivity}, { exact ap succ IH} end definition of_nat_add_of_nat (n m : ℕ) : of_nat n + of_nat m = of_nat (n + m) := begin induction m with m IH, { reflexivity}, { exact ap succ IH} end definition succ_add_plus_two (n m : ℕ₋₂) : n.+1 +2+ m = (n +2+ m).+1 := begin induction m with m IH, { reflexivity}, { exact ap succ IH} end definition add_plus_two_succ (n m : ℕ₋₂) : n +2+ m.+1 = (n +2+ m).+1 := idp definition add_succ_succ (n m : ℕ₋₂) : n + m.+2 = n +2+ m := idp definition succ_add_succ (n m : ℕ₋₂) : n.+1 + m.+1 = n +2+ m := begin cases m with m IH, { reflexivity}, { apply succ_add_plus_two} end definition succ_succ_add (n m : ℕ₋₂) : n.+2 + m = n +2+ m := begin cases m with m IH, { reflexivity}, { exact !succ_add_succ ⬝ !succ_add_plus_two} end definition succ_sub_two (n : ℕ) : (nat.succ n).-2 = n.-2 .+1 := rfl definition sub_two_succ_succ (n : ℕ) : n.-2.+1.+1 = n := rfl definition succ_sub_two_succ (n : ℕ) : (nat.succ n).-2.+1 = n := rfl definition of_nat_le_of_nat {n m : ℕ} (H : n ≤ m) : (of_nat n ≤ of_nat m) := begin induction H with m H IH, { apply le.refl}, { exact trunc_index.le_succ IH} end definition sub_two_le_sub_two {n m : ℕ} (H : n ≤ m) : n.-2 ≤ m.-2 := begin induction H with m H IH, { apply le.refl}, { exact trunc_index.le_succ IH} end definition add_two_le_add_two {n m : ℕ₋₂} (H : n ≤ m) : add_two n ≤ add_two m := begin induction H with m H IH, { reflexivity}, { constructor, exact IH}, end definition le_of_sub_two_le_sub_two {n m : ℕ} (H : n.-2 ≤ m.-2) : n ≤ m := begin rewrite [-add_two_sub_two n, -add_two_sub_two m], exact add_two_le_add_two H, end definition le_of_of_nat_le_of_nat {n m : ℕ} (H : of_nat n ≤ of_nat m) : n ≤ m := begin apply le_of_sub_two_le_sub_two, exact le_of_succ_le_succ (le_of_succ_le_succ H) end protected theorem succ_le_of_not_le {n m : ℕ₋₂} (H : ¬ n ≤ m) : m.+1 ≤ n := begin cases (le.total n m) with H2 H2, { exfalso, exact H H2}, { cases H2 with n' H2', { exfalso, exact H !le.refl}, { exact succ_le_succ H2'}} end end trunc_index open trunc_index namespace is_trunc variables {A B : Type} {n : ℕ₋₂} /- closure properties of truncatedness -/ theorem is_trunc_is_embedding_closed (f : A → B) [Hf : is_embedding f] [HB : is_trunc n B] (Hn : -1 ≤ n) : is_trunc n A := begin induction n with n, {exfalso, exact not_succ_le_minus_two Hn}, {apply is_trunc_succ_intro, intro a a', fapply @is_trunc_is_equiv_closed_rev _ _ n (ap f)} end theorem is_trunc_is_retraction_closed (f : A → B) [Hf : is_retraction f] (n : ℕ₋₂) [HA : is_trunc n A] : is_trunc n B := begin revert A B f Hf HA, induction n with n IH, { intro A B f Hf HA, induction Hf with g ε, fapply is_contr.mk, { exact f (center A)}, { intro b, apply concat, { apply (ap f), exact (center_eq (g b))}, { apply ε}}}, { intro A B f Hf HA, induction Hf with g ε, apply is_trunc_succ_intro, intro b b', fapply (IH (g b = g b')), { intro q, exact ((ε b)⁻¹ ⬝ ap f q ⬝ ε b')}, { apply (is_retraction.mk (ap g)), { intro p, induction p, {rewrite [↑ap, con.left_inv]}}}, { apply is_trunc_eq}} end definition is_embedding_to_fun (A B : Type) : is_embedding (@to_fun A B) := λf f', !is_equiv_ap_to_fun /- theorems about trunctype -/ protected definition trunctype.sigma_char.{l} [constructor] (n : ℕ₋₂) : (trunctype.{l} n) ≃ (Σ (A : Type.{l}), is_trunc n A) := begin fapply equiv.MK, { intro A, exact (⟨carrier A, struct A⟩)}, { intro S, exact (trunctype.mk S.1 S.2)}, { intro S, induction S with S1 S2, reflexivity}, { intro A, induction A with A1 A2, reflexivity}, end definition trunctype_eq_equiv [constructor] (n : ℕ₋₂) (A B : n-Type) : (A = B) ≃ (carrier A = carrier B) := calc (A = B) ≃ (to_fun (trunctype.sigma_char n) A = to_fun (trunctype.sigma_char n) B) : eq_equiv_fn_eq_of_equiv ... ≃ ((to_fun (trunctype.sigma_char n) A).1 = (to_fun (trunctype.sigma_char n) B).1) : equiv.symm (!equiv_subtype) ... ≃ (carrier A = carrier B) : equiv.refl theorem is_trunc_trunctype [instance] (n : ℕ₋₂) : is_trunc n.+1 (n-Type) := begin apply is_trunc_succ_intro, intro X Y, fapply is_trunc_equiv_closed_rev, { apply trunctype_eq_equiv}, fapply is_trunc_equiv_closed_rev, { apply eq_equiv_equiv}, induction n, { apply @is_contr_of_inhabited_prop, { apply is_trunc_is_embedding_closed, { apply is_embedding_to_fun} , { reflexivity}}, { apply equiv_of_is_contr_of_is_contr}}, { apply is_trunc_is_embedding_closed, { apply is_embedding_to_fun}, { apply minus_one_le_succ}} end /- univalence for truncated types -/ definition teq_equiv_equiv {n : ℕ₋₂} {A B : n-Type} : (A = B) ≃ (A ≃ B) := trunctype_eq_equiv n A B ⬝e eq_equiv_equiv A B definition tua {n : ℕ₋₂} {A B : n-Type} (f : A ≃ B) : A = B := (trunctype_eq_equiv n A B)⁻¹ᶠ (ua f) definition tua_refl {n : ℕ₋₂} (A : n-Type) : tua (@erfl A) = idp := begin refine ap (trunctype_eq_equiv n A A)⁻¹ᶠ (ua_refl A) ⬝ _, esimp, refine ap (eq_of_fn_eq_fn _) _ ⬝ !eq_of_fn_eq_fn'_idp , esimp, apply ap (dpair_eq_dpair idp), apply is_prop.elim end definition tua_trans {n : ℕ₋₂} {A B C : n-Type} (f : A ≃ B) (g : B ≃ C) : tua (f ⬝e g) = tua f ⬝ tua g := begin refine ap (trunctype_eq_equiv n A C)⁻¹ᶠ (ua_trans f g) ⬝ _, esimp, refine ap (eq_of_fn_eq_fn _) _ ⬝ !eq_of_fn_eq_fn'_con, refine _ ⬝ !dpair_eq_dpair_con, apply ap (dpair_eq_dpair _), apply is_prop.elim end definition tua_symm {n : ℕ₋₂} {A B : n-Type} (f : A ≃ B) : tua f⁻¹ᵉ = (tua f)⁻¹ := begin apply eq_inv_of_con_eq_idp', refine !tua_trans⁻¹ ⬝ _, refine ap tua _ ⬝ !tua_refl, apply equiv_eq, exact to_right_inv f end definition tcast [unfold 4] {n : ℕ₋₂} {A B : n-Type} (p : A = B) (a : A) : B := cast (ap trunctype.carrier p) a definition ptcast [constructor] {n : ℕ₋₂} {A B : n-Type*} (p : A = B) : A →* B := pcast (ap ptrunctype.to_pType p) theorem tcast_tua_fn {n : ℕ₋₂} {A B : n-Type} (f : A ≃ B) : tcast (tua f) = to_fun f := begin cases A with A HA, cases B with B HB, esimp at *, induction f using rec_on_ua_idp, esimp, have HA = HB, from !is_prop.elim, cases this, exact ap tcast !tua_refl end /- theorems about decidable equality and axiom K -/ theorem is_set_of_axiom_K {A : Type} (K : Π{a : A} (p : a = a), p = idp) : is_set A := is_set.mk _ (λa b p q, eq.rec K q p) theorem is_set_of_relation.{u} {A : Type.{u}} (R : A → A → Type.{u}) (mere : Π(a b : A), is_prop (R a b)) (refl : Π(a : A), R a a) (imp : Π{a b : A}, R a b → a = b) : is_set A := is_set_of_axiom_K (λa p, have H2 : transport (λx, R a x → a = x) p (@imp a a) = @imp a a, from !apdt, have H3 : Π(r : R a a), transport (λx, a = x) p (imp r) = imp (transport (λx, R a x) p r), from to_fun (equiv.symm !heq_pi) H2, have H4 : imp (refl a) ⬝ p = imp (refl a), from calc imp (refl a) ⬝ p = transport (λx, a = x) p (imp (refl a)) : transport_eq_r ... = imp (transport (λx, R a x) p (refl a)) : H3 ... = imp (refl a) : is_prop.elim, cancel_left (imp (refl a)) H4) definition relation_equiv_eq {A : Type} (R : A → A → Type) (mere : Π(a b : A), is_prop (R a b)) (refl : Π(a : A), R a a) (imp : Π{a b : A}, R a b → a = b) (a b : A) : R a b ≃ a = b := have is_set A, from is_set_of_relation R mere refl @imp, equiv_of_is_prop imp (λp, p ▸ refl a) local attribute not [reducible] theorem is_set_of_double_neg_elim {A : Type} (H : Π(a b : A), ¬¬a = b → a = b) : is_set A := is_set_of_relation (λa b, ¬¬a = b) _ (λa n, n idp) H section open decidable --this is proven differently in init.hedberg theorem is_set_of_decidable_eq (A : Type) [H : decidable_eq A] : is_set A := is_set_of_double_neg_elim (λa b, by_contradiction) end theorem is_trunc_of_axiom_K_of_le {A : Type} {n : ℕ₋₂} (H : -1 ≤ n) (K : Π(a : A), is_trunc n (a = a)) : is_trunc (n.+1) A := @is_trunc_succ_intro _ _ (λa b, is_trunc_of_imp_is_trunc_of_le H (λp, eq.rec_on p !K)) theorem is_trunc_succ_of_is_trunc_loop (Hn : -1 ≤ n) (Hp : Π(a : A), is_trunc n (a = a)) : is_trunc (n.+1) A := begin apply is_trunc_succ_intro, intros a a', apply is_trunc_of_imp_is_trunc_of_le Hn, intro p, induction p, apply Hp end theorem is_prop_iff_is_contr {A : Type} (a : A) : is_prop A ↔ is_contr A := iff.intro (λH, is_contr.mk a (is_prop.elim a)) _ theorem is_trunc_succ_iff_is_trunc_loop (A : Type) (Hn : -1 ≤ n) : is_trunc (n.+1) A ↔ Π(a : A), is_trunc n (a = a) := iff.intro _ (is_trunc_succ_of_is_trunc_loop Hn) theorem is_trunc_iff_is_contr_loop_succ (n : ℕ) (A : Type) : is_trunc n A ↔ Π(a : A), is_contr (Ω[succ n](pointed.Mk a)) := begin revert A, induction n with n IH, { intro A, esimp [iterated_ploop_space], transitivity _, { apply is_trunc_succ_iff_is_trunc_loop, apply le.refl}, { apply pi_iff_pi, intro a, esimp, apply is_prop_iff_is_contr, reflexivity}}, { intro A, esimp [iterated_ploop_space], transitivity _, { apply @is_trunc_succ_iff_is_trunc_loop @n, esimp, apply minus_one_le_succ}, apply pi_iff_pi, intro a, transitivity _, apply IH, transitivity _, apply pi_iff_pi, intro p, rewrite [iterated_loop_space_loop_irrel n p], apply iff.refl, esimp, apply imp_iff, reflexivity} end theorem is_trunc_iff_is_contr_loop (n : ℕ) (A : Type) : is_trunc (n.-2.+1) A ↔ (Π(a : A), is_contr (Ω[n](pointed.Mk a))) := begin induction n with n, { esimp [sub_two,iterated_ploop_space], apply iff.intro, intro H a, exact is_contr_of_inhabited_prop a, intro H, apply is_prop_of_imp_is_contr, exact H}, { apply is_trunc_iff_is_contr_loop_succ}, end theorem is_contr_loop_of_is_trunc (n : ℕ) (A : Type*) [H : is_trunc (n.-2.+1) A] : is_contr (Ω[n] A) := begin induction A, apply iff.mp !is_trunc_iff_is_contr_loop H end theorem is_trunc_loop_of_is_trunc (n : ℕ₋₂) (k : ℕ) (A : Type*) [H : is_trunc n A] : is_trunc n (Ω[k] A) := begin induction k with k IH, { exact H}, { apply is_trunc_eq} end end is_trunc open is_trunc namespace trunc universe variable u variables {n : ℕ₋₂} {A : Type.{u}} {B : Type} {a₁ a₂ a₃ a₄ : A} definition trunc_functor2 [unfold 6 7] {n : ℕ₋₂} {A B C : Type} (f : A → B → C) (x : trunc n A) (y : trunc n B) : trunc n C := by induction x with a; induction y with b; exact tr (f a b) definition tconcat [unfold 6 7] (p : trunc n (a₁ = a₂)) (q : trunc n (a₂ = a₃)) : trunc n (a₁ = a₃) := trunc_functor2 concat p q definition tinverse [unfold 5] (p : trunc n (a₁ = a₂)) : trunc n (a₂ = a₁) := trunc_functor _ inverse p definition tidp [reducible] [constructor] : trunc n (a₁ = a₁) := tr idp definition tassoc (p : trunc n (a₁ = a₂)) (q : trunc n (a₂ = a₃)) (r : trunc n (a₃ = a₄)) : tconcat (tconcat p q) r = tconcat p (tconcat q r) := by induction p; induction q; induction r; exact ap tr !con.assoc definition tidp_tcon (p : trunc n (a₁ = a₂)) : tconcat tidp p = p := by induction p; exact ap tr !idp_con definition tcon_tidp (p : trunc n (a₁ = a₂)) : tconcat p tidp = p := by induction p; reflexivity definition left_tinv (p : trunc n (a₁ = a₂)) : tconcat (tinverse p) p = tidp := by induction p; exact ap tr !con.left_inv definition right_tinv (p : trunc n (a₁ = a₂)) : tconcat p (tinverse p) = tidp := by induction p; exact ap tr !con.right_inv definition tap [unfold 7] (f : A → B) (p : trunc n (a₁ = a₂)) : trunc n (f a₁ = f a₂) := trunc_functor _ (ap f) p definition tap_tidp (f : A → B) : tap f (@tidp n A a₁) = tidp := idp definition tap_tcon (f : A → B) (p : trunc n (a₁ = a₂)) (q : trunc n (a₂ = a₃)) : tap f (tconcat p q) = tconcat (tap f p) (tap f q) := by induction p; induction q; exact ap tr !ap_con /- characterization of equality in truncated types -/ protected definition code [unfold 3 4] (n : ℕ₋₂) (aa aa' : trunc n.+1 A) : trunctype.{u} n := by induction aa with a; induction aa' with a'; exact trunctype.mk' n (trunc n (a = a')) protected definition encode [unfold 3 5] {n : ℕ₋₂} {aa aa' : trunc n.+1 A} : aa = aa' → trunc.code n aa aa' := begin intro p, induction p, induction aa with a, esimp, exact (tr idp) end protected definition decode {n : ℕ₋₂} (aa aa' : trunc n.+1 A) : trunc.code n aa aa' → aa = aa' := begin induction aa' with a', induction aa with a, esimp [trunc.code, trunc.rec_on], intro x, induction x with p, exact ap tr p, end definition trunc_eq_equiv [constructor] (n : ℕ₋₂) (aa aa' : trunc n.+1 A) : aa = aa' ≃ trunc.code n aa aa' := begin fapply equiv.MK, { apply trunc.encode}, { apply trunc.decode}, { eapply (trunc.rec_on aa'), eapply (trunc.rec_on aa), intro a a' x, esimp [trunc.code, trunc.rec_on] at x, refine (@trunc.rec_on n _ _ x _ _), intro x, apply is_trunc_eq, intro p, induction p, reflexivity}, { intro p, induction p, apply (trunc.rec_on aa), intro a, exact idp}, end definition tr_eq_tr_equiv [constructor] (n : ℕ₋₂) (a a' : A) : (tr a = tr a' :> trunc n.+1 A) ≃ trunc n (a = a') := !trunc_eq_equiv definition code_mul {n : ℕ₋₂} {aa₁ aa₂ aa₃ : trunc n.+1 A} (g : trunc.code n aa₁ aa₂) (h : trunc.code n aa₂ aa₃) : trunc.code n aa₁ aa₃ := begin induction aa₁ with a₁, induction aa₂ with a₂, induction aa₃ with a₃, esimp at *, apply tconcat g h, end /- encode preserves concatenation -/ definition encode_con' {n : ℕ₋₂} {aa₁ aa₂ aa₃ : trunc n.+1 A} (p : aa₁ = aa₂) (q : aa₂ = aa₃) : trunc.encode (p ⬝ q) = code_mul (trunc.encode p) (trunc.encode q) := begin induction p, induction q, induction aa₁ with a₁, reflexivity end definition encode_con {n : ℕ₋₂} {a₁ a₂ a₃ : A} (p : tr a₁ = tr a₂ :> trunc (n.+1) A) (q : tr a₂ = tr a₃ :> trunc (n.+1) A) : trunc.encode (p ⬝ q) = tconcat (trunc.encode p) (trunc.encode q) := encode_con' p q /- the principle of unique choice -/ definition unique_choice {P : A → Type} [H : Πa, is_prop (P a)] (f : Πa, ∥ P a ∥) (a : A) : P a := !trunc_equiv (f a) /- transport over a truncated family -/ definition trunc_transport {a a' : A} {P : A → Type} (p : a = a') (n : ℕ₋₂) (x : P a) : transport (λa, trunc n (P a)) p (tr x) = tr (p ▸ x) := by induction p; reflexivity /- pathover over a truncated family -/ definition trunc_pathover {A : Type} {B : A → Type} {n : ℕ₋₂} {a a' : A} {p : a = a'} {b : B a} {b' : B a'} (q : b =[p] b') : @tr n _ b =[p] @tr n _ b' := by induction q; constructor /- truncations preserve truncatedness -/ definition is_trunc_trunc_of_is_trunc [instance] [priority 500] (A : Type) (n m : ℕ₋₂) [H : is_trunc n A] : is_trunc n (trunc m A) := begin revert A m H, eapply (trunc_index.rec_on n), { clear n, intro A m H, apply is_contr_equiv_closed, { apply equiv.symm, apply trunc_equiv, apply (@is_trunc_of_le _ -2), apply minus_two_le} }, { clear n, intro n IH A m H, induction m with m, { apply (@is_trunc_of_le _ -2), apply minus_two_le}, { apply is_trunc_succ_intro, intro aa aa', apply (@trunc.rec_on _ _ _ aa (λy, !is_trunc_succ_of_is_prop)), eapply (@trunc.rec_on _ _ _ aa' (λy, !is_trunc_succ_of_is_prop)), intro a a', apply (is_trunc_equiv_closed_rev), { apply tr_eq_tr_equiv}, { exact (IH _ _ _)}}} end /- equivalences between truncated types (see also hit.trunc) -/ definition trunc_trunc_equiv_left [constructor] (A : Type) {n m : ℕ₋₂} (H : n ≤ m) : trunc n (trunc m A) ≃ trunc n A := begin note H2 := is_trunc_of_le (trunc n A) H, fapply equiv.MK, { intro x, induction x with x, induction x with x, exact tr x}, { intro x, induction x with x, exact tr (tr x)}, { intro x, induction x with x, reflexivity}, { intro x, induction x with x, induction x with x, reflexivity} end definition trunc_trunc_equiv_right [constructor] (A : Type) {n m : ℕ₋₂} (H : n ≤ m) : trunc m (trunc n A) ≃ trunc n A := begin apply trunc_equiv, exact is_trunc_of_le _ H, end definition trunc_equiv_trunc_of_le {n m : ℕ₋₂} {A B : Type} (H : n ≤ m) (f : trunc m A ≃ trunc m B) : trunc n A ≃ trunc n B := (trunc_trunc_equiv_left A H)⁻¹ᵉ ⬝e trunc_equiv_trunc n f ⬝e trunc_trunc_equiv_left B H definition trunc_trunc_equiv_trunc_trunc [constructor] (n m : ℕ₋₂) (A : Type) : trunc n (trunc m A) ≃ trunc m (trunc n A) := begin fapply equiv.MK: intro x; induction x with x; induction x with x, { exact tr (tr x)}, { exact tr (tr x)}, { reflexivity}, { reflexivity} end theorem is_trunc_trunc_of_le (A : Type) (n : ℕ₋₂) {m k : ℕ₋₂} (H : m ≤ k) [is_trunc n (trunc k A)] : is_trunc n (trunc m A) := begin apply is_trunc_equiv_closed, { apply trunc_trunc_equiv_left, exact H}, end definition trunc_functor_homotopy [unfold 7] {X Y : Type} (n : ℕ₋₂) {f g : X → Y} (p : f ~ g) (x : trunc n X) : trunc_functor n f x = trunc_functor n g x := begin induction x with x, esimp, exact ap tr (p x) end definition trunc_functor_homotopy_of_le {n k : ℕ₋₂} {A B : Type} (f : A → B) (H : n ≤ k) : to_fun (trunc_trunc_equiv_left B H) ∘ trunc_functor n (trunc_functor k f) ∘ to_fun (trunc_trunc_equiv_left A H)⁻¹ᵉ ~ trunc_functor n f := begin intro x, induction x with x, reflexivity end definition is_equiv_trunc_functor_of_le {n k : ℕ₋₂} {A B : Type} (f : A → B) (H : n ≤ k) [is_equiv (trunc_functor k f)] : is_equiv (trunc_functor n f) := is_equiv_of_equiv_of_homotopy (trunc_equiv_trunc_of_le H (equiv.mk (trunc_functor k f) _)) (trunc_functor_homotopy_of_le f H) /- trunc_functor preserves surjectivity -/ definition is_surjective_trunc_functor {A B : Type} (n : ℕ₋₂) (f : A → B) [H : is_surjective f] : is_surjective (trunc_functor n f) := begin cases n with n: intro b, { exact tr (fiber.mk !center !is_prop.elim)}, { refine @trunc.rec _ _ _ _ _ b, {intro x, exact is_trunc_of_le _ !minus_one_le_succ}, clear b, intro b, induction H b with a p, exact tr (fiber.mk (tr a) (ap tr p))} end /- truncation of pointed types and its functorial action -/ definition ptrunc [constructor] (n : ℕ₋₂) (X : Type*) : n-Type* := ptrunctype.mk (trunc n X) _ (tr pt) definition ptrunc_functor [constructor] {X Y : Type*} (n : ℕ₋₂) (f : X →* Y) : ptrunc n X →* ptrunc n Y := pmap.mk (trunc_functor n f) (ap tr (respect_pt f)) definition ptrunc_pequiv_ptrunc [constructor] (n : ℕ₋₂) {X Y : Type*} (H : X ≃* Y) : ptrunc n X ≃* ptrunc n Y := pequiv_of_equiv (trunc_equiv_trunc n H) (ap tr (respect_pt H)) definition ptrunc_pequiv [constructor] (n : ℕ₋₂) (X : Type*) (H : is_trunc n X) : ptrunc n X ≃* X := pequiv_of_equiv (trunc_equiv n X) idp definition ptrunc_ptrunc_pequiv_left [constructor] (A : Type*) {n m : ℕ₋₂} (H : n ≤ m) : ptrunc n (ptrunc m A) ≃* ptrunc n A := pequiv_of_equiv (trunc_trunc_equiv_left A H) idp definition ptrunc_ptrunc_pequiv_right [constructor] (A : Type*) {n m : ℕ₋₂} (H : n ≤ m) : ptrunc m (ptrunc n A) ≃* ptrunc n A := pequiv_of_equiv (trunc_trunc_equiv_right A H) idp definition ptrunc_pequiv_ptrunc_of_le {n m : ℕ₋₂} {A B : Type*} (H : n ≤ m) (f : ptrunc m A ≃* ptrunc m B) : ptrunc n A ≃* ptrunc n B := (ptrunc_ptrunc_pequiv_left A H)⁻¹ᵉ* ⬝e* ptrunc_pequiv_ptrunc n f ⬝e* ptrunc_ptrunc_pequiv_left B H definition ptrunc_ptrunc_pequiv_ptrunc_ptrunc [constructor] (n m : ℕ₋₂) (A : Type*) : ptrunc n (ptrunc m A) ≃ ptrunc m (ptrunc n A) := pequiv_of_equiv (trunc_trunc_equiv_trunc_trunc n m A) idp definition loop_ptrunc_pequiv [constructor] (n : ℕ₋₂) (A : Type*) : Ω (ptrunc (n+1) A) ≃* ptrunc n (Ω A) := pequiv_of_equiv !tr_eq_tr_equiv idp definition loop_ptrunc_pequiv_con {n : ℕ₋₂} {A : Type*} (p q : Ω (ptrunc (n+1) A)) : loop_ptrunc_pequiv n A (p ⬝ q) = tconcat (loop_ptrunc_pequiv n A p) (loop_ptrunc_pequiv n A q) := encode_con p q definition iterated_loop_ptrunc_pequiv (n : ℕ₋₂) (k : ℕ) (A : Type*) : Ω[k] (ptrunc (n+k) A) ≃* ptrunc n (Ω[k] A) := begin revert n, induction k with k IH: intro n, { reflexivity}, { refine _ ⬝e* loop_ptrunc_pequiv n (Ω[k] A), rewrite [iterated_ploop_space_succ], apply loop_pequiv_loop, refine _ ⬝e* IH (n.+1), rewrite succ_add_nat} end definition iterated_loop_ptrunc_pequiv_con {n : ℕ₋₂} {k : ℕ} {A : Type*} (p q : Ω[succ k] (ptrunc (n+succ k) A)) : iterated_loop_ptrunc_pequiv n (succ k) A (p ⬝ q) = tconcat (iterated_loop_ptrunc_pequiv n (succ k) A p) (iterated_loop_ptrunc_pequiv n (succ k) A q) := begin refine _ ⬝ loop_ptrunc_pequiv_con _ _, exact ap !loop_ptrunc_pequiv !loop_pequiv_loop_con end definition iterated_loop_ptrunc_pequiv_inv_con {n : ℕ₋₂} {k : ℕ} {A : Type*} (p q : ptrunc n (Ω[succ k] A)) : (iterated_loop_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* (tconcat p q) = (iterated_loop_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* p ⬝ (iterated_loop_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* q := equiv.inv_preserve_binary (iterated_loop_ptrunc_pequiv n (succ k) A) concat tconcat (@iterated_loop_ptrunc_pequiv_con n k A) p q definition ptrunc_functor_pcompose [constructor] {X Y Z : Type*} (n : ℕ₋₂) (g : Y →* Z) (f : X →* Y) : ptrunc_functor n (g ∘* f) ~* ptrunc_functor n g ∘* ptrunc_functor n f := begin fapply phomotopy.mk, { apply trunc_functor_compose}, { esimp, refine !idp_con ⬝ _, refine whisker_right !ap_compose'⁻¹ᵖ _ ⬝ _, esimp, refine whisker_right (ap_compose' tr g _) _ ⬝ _, exact !ap_con⁻¹}, end definition ptrunc_functor_pid [constructor] (X : Type*) (n : ℕ₋₂) : ptrunc_functor n (pid X) ~* pid (ptrunc n X) := begin fapply phomotopy.mk, { apply trunc_functor_id}, { reflexivity}, end definition ptrunc_functor_pcast [constructor] {X Y : Type*} (n : ℕ₋₂) (p : X = Y) : ptrunc_functor n (pcast p) ~* pcast (ap (ptrunc n) p) := begin fapply phomotopy.mk, { intro x, esimp, refine !trunc_functor_cast ⬝ _, refine ap010 cast _ x, refine !ap_compose'⁻¹ ⬝ !ap_compose'}, { induction p, reflexivity}, end definition ptrunc_functor_phomotopy [constructor] {X Y : Type*} (n : ℕ₋₂) {f g : X →* Y} (p : f ~* g) : ptrunc_functor n f ~* ptrunc_functor n g := begin fapply phomotopy.mk, { exact trunc_functor_homotopy n p}, { esimp, refine !ap_con⁻¹ ⬝ _, exact ap02 tr !to_homotopy_pt}, end definition pcast_ptrunc [constructor] (n : ℕ₋₂) {A B : Type*} (p : A = B) : pcast (ap (ptrunc n) p) ~* ptrunc_functor n (pcast p) := begin fapply phomotopy.mk, { intro a, induction p, esimp, exact !trunc_functor_id⁻¹}, { induction p, reflexivity} end end trunc open trunc /- The truncated encode-decode method -/ namespace eq definition truncated_encode {k : ℕ₋₂} {A : Type} {a₀ a : A} {code : A → Type} [Πa, is_trunc k (code a)] (c₀ : code a₀) (p : trunc k (a₀ = a)) : code a := begin induction p with p, exact transport code p c₀ end definition truncated_encode_decode_method {k : ℕ₋₂} {A : Type} (a₀ a : A) (code : A → Type) [Πa, is_trunc k (code a)] (c₀ : code a₀) (decode : Π(a : A) (c : code a), trunc k (a₀ = a)) (encode_decode : Π(a : A) (c : code a), truncated_encode c₀ (decode a c) = c) (decode_encode : decode a₀ c₀ = tr idp) : trunc k (a₀ = a) ≃ code a := begin fapply equiv.MK, { exact truncated_encode c₀}, { apply decode}, { intro c, apply encode_decode}, { intro p, induction p with p, induction p, exact decode_encode}, end end eq /- some consequences for properties about functions (surjectivity etc.) -/ namespace function variables {A B : Type} definition is_surjective_of_is_equiv [instance] (f : A → B) [H : is_equiv f] : is_surjective f := λb, begin esimp, apply center, apply is_trunc_trunc_of_is_trunc end definition is_equiv_equiv_is_embedding_times_is_surjective [constructor] (f : A → B) : is_equiv f ≃ (is_embedding f × is_surjective f) := equiv_of_is_prop (λH, (_, _)) (λP, prod.rec_on P (λH₁ H₂, !is_equiv_of_is_surjective_of_is_embedding)) /- Theorem 8.8.1: A function is an equivalence if it's an embedding and it's action on sets is an surjection -/ definition is_equiv_of_is_surjective_trunc_of_is_embedding {A B : Type} (f : A → B) [H : is_embedding f] [H' : is_surjective (trunc_functor 0 f)] : is_equiv f := have is_surjective f, begin intro b, induction H' (tr b) with a p, induction a with a, esimp at p, induction (tr_eq_tr_equiv _ _ _ p) with q, exact image.mk a q end, is_equiv_of_is_surjective_of_is_embedding f /- Corollary 8.8.2: A function f is an equivalence if Ωf and trunc_functor 0 f are equivalences -/ definition is_equiv_of_is_equiv_ap1_of_is_equiv_trunc {A B : Type} (f : A → B) [H : Πa, is_equiv (ap1 (pmap_of_map f a))] [H' : is_equiv (trunc_functor 0 f)] : is_equiv f := have is_embedding f, begin intro a a', apply is_equiv_of_imp_is_equiv, intro p, note q := ap (@tr 0 _) p, note r := @(eq_of_fn_eq_fn' (trunc_functor 0 f)) _ (tr a) (tr a') q, induction (tr_eq_tr_equiv _ _ _ r) with s, induction s, apply is_equiv.homotopy_closed (ap1 (pmap_of_map f a)), intro p, apply idp_con end, is_equiv_of_is_surjective_trunc_of_is_embedding f -- Whitehead's principle itself is in homotopy.homotopy_group, since it needs the definition of -- a homotopy group. end function