namespace sigma open lift open sigma.ops sigma variables {A : Type} {B : A → Type} variables {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} definition dpair.inj (H : ⟨a₁, b₁⟩ = ⟨a₂, b₂⟩) : Σ (e₁ : a₁ = a₂), eq.rec b₁ e₁ = b₂ := down (no_confusion H (λ e₁ e₂, ⟨e₁, e₂⟩)) definition dpair.inj₁ (H : ⟨a₁, b₁⟩ = ⟨a₂, b₂⟩) : a₁ = a₂ := (dpair.inj H).1 definition dpair.inj₂ (H : ⟨a₁, b₁⟩ = ⟨a₂, b₂⟩) : eq.rec b₁ (dpair.inj₁ H) = b₂ := (dpair.inj H).2 end sigma structure foo := mk :: (A : Type) (B : A → Type) (a : A) (b : B a) set_option pp.implicit true namespace foo open lift sigma sigma.ops universe variables l₁ l₂ variables {A₁ : Type.{l₁}} {B₁ : A₁ → Type.{l₂}} {a₁ : A₁} {b₁ : B₁ a₁} variables {A₂ : Type.{l₁}} {B₂ : A₂ → Type.{l₂}} {a₂ : A₂} {b₂ : B₂ a₂} definition foo.inj (H : mk A₁ B₁ a₁ b₁ = mk A₂ B₂ a₂ b₂) : Σ (e₁ : A₁ = A₂) (e₂ : eq.rec B₁ e₁ = B₂) (e₃ : eq.rec a₁ e₁ = a₂), eq.rec (eq.rec (eq.rec b₁ e₁) e₂) e₃ = b₂ := down (no_confusion H (λ e₁ e₂ e₃ e₄, ⟨e₁, e₂, e₃, e₄⟩)) definition foo.inj₁ (H : mk A₁ B₁ a₁ b₁ = mk A₂ B₂ a₂ b₂) : A₁ = A₂ := (foo.inj H).1 definition foo.inj₂ (H : mk A₁ B₁ a₁ b₁ = mk A₂ B₂ a₂ b₂) : eq.rec B₁ (foo.inj₁ H) = B₂ := (foo.inj H).2.1 definition foo.inj₃ (H : mk A₁ B₁ a₁ b₁ = mk A₂ B₂ a₂ b₂) : eq.rec a₁ (foo.inj₁ H) = a₂ := (foo.inj H).2.2.1 definition foo.inj₄ (H : mk A₁ B₁ a₁ b₁ = mk A₂ B₂ a₂ b₂) : eq.rec (eq.rec (eq.rec b₁ (foo.inj₁ H)) (foo.inj₂ H)) (foo.inj₃ H) = b₂ := (foo.inj H).2.2.2 end foo