-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura, Jeremy Avigad import logic.prop logic.inhabited logic.decidable open inhabited decidable eq.ops -- data.sum -- ======== -- The sum type, aka disjoint union. inductive sum (A B : Type) : Type := inl : A → sum A B, inr : B → sum A B namespace sum notation A ⊎ B := sum A B namespace extra_notation infixr `+`:25 := sum -- conflicts with notation for addition end extra_notation variables {A B : Type} variables {a a₁ a₂ : A} {b b₁ b₂ : B} protected definition rec_on {C : (A ⊎ B) → Type} (s : A ⊎ B) (H₁ : ∀a : A, C (inl B a)) (H₂ : ∀b : B, C (inr A b)) : C s := rec H₁ H₂ s protected definition cases_on {P : (A ⊎ B) → Prop} (s : A ⊎ B) (H₁ : ∀a : A, P (inl B a)) (H₂ : ∀b : B, P (inr A b)) : P s := rec H₁ H₂ s -- Here is the trick for the theorems that follow: -- Fixing a₁, "f s" is a recursive description of "inl B a₁ = s". -- When s is (inl B a₁), it reduces to a₁ = a₁. -- When s is (inl B a₂), it reduces to a₁ = a₂. -- When s is (inr A b), it reduces to false. theorem inl_inj : inl B a₁ = inl B a₂ → a₁ = a₂ := assume H, let f := λs, rec_on s (λa, a₁ = a) (λb, false) in have H₁ : f (inl B a₁), from rfl, have H₂ : f (inl B a₂), from H ▸ H₁, H₂ theorem inl_neq_inr : inl B a ≠ inr A b := assume H, let f := λs, rec_on s (λa', a = a') (λb, false) in have H₁ : f (inl B a), from rfl, have H₂ : f (inr A b), from H ▸ H₁, H₂ theorem inr_inj : inr A b₁ = inr A b₂ → b₁ = b₂ := assume H, let f := λs, rec_on s (λa, false) (λb, b₁ = b) in have H₁ : f (inr A b₁), from rfl, have H₂ : f (inr A b₂), from H ▸ H₁, H₂ protected definition is_inhabited_left [instance] : inhabited A → inhabited (A ⊎ B) := assume H : inhabited A, inhabited.mk (inl B (default A)) protected definition is_inhabited_right [instance] : inhabited B → inhabited (A ⊎ B) := assume H : inhabited B, inhabited.mk (inr A (default B)) protected definition has_eq_decidable [instance] : decidable_eq A → decidable_eq B → decidable_eq (A ⊎ B) := assume (H₁ : decidable_eq A) (H₂ : decidable_eq B), take s₁ s₂ : A ⊎ B, rec_on s₁ (take a₁, show decidable (inl B a₁ = s₂), from rec_on s₂ (take a₂, show decidable (inl B a₁ = inl B a₂), from decidable.rec_on (H₁ a₁ a₂) (assume Heq : a₁ = a₂, decidable.inl (Heq ▸ rfl)) (assume Hne : a₁ ≠ a₂, decidable.inr (mt inl_inj Hne))) (take b₂, have H₃ : (inl B a₁ = inr A b₂) ↔ false, from iff.intro inl_neq_inr (assume H₄, false_elim H₄), show decidable (inl B a₁ = inr A b₂), from decidable_iff_equiv _ (iff.symm H₃))) (take b₁, show decidable (inr A b₁ = s₂), from rec_on s₂ (take a₂, have H₃ : (inr A b₁ = inl B a₂) ↔ false, from iff.intro (assume H₄, inl_neq_inr (H₄⁻¹)) (assume H₄, false_elim H₄), show decidable (inr A b₁ = inl B a₂), from decidable_iff_equiv _ (iff.symm H₃)) (take b₂, show decidable (inr A b₁ = inr A b₂), from decidable.rec_on (H₂ b₁ b₂) (assume Heq : b₁ = b₂, decidable.inl (Heq ▸ rfl)) (assume Hne : b₁ ≠ b₂, decidable.inr (mt inr_inj Hne)))) end sum