import logic open eq.ops inductive nat : Type := zero : nat, succ : nat → nat namespace nat definition add (x y : nat) : nat := nat.rec x (λn r, succ r) y infixl `+`:65 := add definition mul (n m : nat) := nat.rec zero (fun m x, x + n) m infixl `*`:75 := mul axiom mul_succ_right (n m : nat) : n * succ m = n * m + n open eq theorem small2 (n m l : nat) : n * succ l + m = n * l + n + m := subst (mul_succ_right _ _) (eq.refl (n * succ l + m)) end nat