/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura Useful logical identities. Since we are not using propositional extensionality, some of the calculations use the type class support provided by logic.instances. -/ import logic.connectives logic.instances logic.quantifiers logic.cast open relation decidable relation.iff_ops theorem or.right_comm (a b c : Prop) : (a ∨ b) ∨ c ↔ (a ∨ c) ∨ b := calc (a ∨ b) ∨ c ↔ a ∨ (b ∨ c) : or.assoc ... ↔ a ∨ (c ∨ b) : {or.comm} ... ↔ (a ∨ c) ∨ b : iff.symm or.assoc theorem or.left_comm [simp] (a b c : Prop) : a ∨ (b ∨ c) ↔ b ∨ (a ∨ c) := calc a ∨ (b ∨ c) ↔ (a ∨ b) ∨ c : iff.symm or.assoc ... ↔ (b ∨ a) ∨ c : {or.comm} ... ↔ b ∨ (a ∨ c) : or.assoc theorem and.right_comm (a b c : Prop) : (a ∧ b) ∧ c ↔ (a ∧ c) ∧ b := calc (a ∧ b) ∧ c ↔ a ∧ (b ∧ c) : and.assoc ... ↔ a ∧ (c ∧ b) : {and.comm} ... ↔ (a ∧ c) ∧ b : iff.symm and.assoc theorem and.left_comm [simp] (a b c : Prop) : a ∧ (b ∧ c) ↔ b ∧ (a ∧ c) := calc a ∧ (b ∧ c) ↔ (a ∧ b) ∧ c : iff.symm and.assoc ... ↔ (b ∧ a) ∧ c : {and.comm} ... ↔ b ∧ (a ∧ c) : and.assoc theorem not_not_iff {a : Prop} [D : decidable a] : (¬¬a) ↔ a := iff.intro (assume H : ¬¬a, by_cases (assume H' : a, H') (assume H' : ¬a, absurd H' H)) (assume H : a, assume H', H' H) theorem not_not_elim {a : Prop} [D : decidable a] (H : ¬¬a) : a := iff.mp not_not_iff H theorem not_true_iff_false [simp] : ¬true ↔ false := iff.intro (assume H, H trivial) false.elim theorem not_false_iff_true [simp] : ¬false ↔ true := iff.intro (assume H, trivial) (assume H H', H') theorem not_or_iff_not_and_not {a b : Prop} [Da : decidable a] [Db : decidable b] : ¬(a ∨ b) ↔ ¬a ∧ ¬b := iff.intro (assume H, or.elim (em a) (assume Ha, absurd (or.inl Ha) H) (assume Hna, or.elim (em b) (assume Hb, absurd (or.inr Hb) H) (assume Hnb, and.intro Hna Hnb))) (assume (H : ¬a ∧ ¬b) (N : a ∨ b), or.elim N (assume Ha, absurd Ha (and.elim_left H)) (assume Hb, absurd Hb (and.elim_right H))) theorem not_and_iff_not_or_not {a b : Prop} [Da : decidable a] [Db : decidable b] : ¬(a ∧ b) ↔ ¬a ∨ ¬b := iff.intro (assume H, or.elim (em a) (assume Ha, or.elim (em b) (assume Hb, absurd (and.intro Ha Hb) H) (assume Hnb, or.inr Hnb)) (assume Hna, or.inl Hna)) (assume (H : ¬a ∨ ¬b) (N : a ∧ b), or.elim H (assume Hna, absurd (and.elim_left N) Hna) (assume Hnb, absurd (and.elim_right N) Hnb)) theorem imp_iff_not_or {a b : Prop} [Da : decidable a] : (a → b) ↔ ¬a ∨ b := iff.intro (assume H : a → b, (or.elim (em a) (assume Ha : a, or.inr (H Ha)) (assume Hna : ¬a, or.inl Hna))) (assume (H : ¬a ∨ b) (Ha : a), or_resolve_right H (not_not_iff⁻¹ ▸ Ha)) theorem not_implies_iff_and_not {a b : Prop} [Da : decidable a] [Db : decidable b] : ¬(a → b) ↔ a ∧ ¬b := calc ¬(a → b) ↔ ¬(¬a ∨ b) : {imp_iff_not_or} ... ↔ ¬¬a ∧ ¬b : not_or_iff_not_and_not ... ↔ a ∧ ¬b : {not_not_iff} theorem peirce {a b : Prop} [D : decidable a] : ((a → b) → a) → a := assume H, by_contradiction (assume Hna : ¬a, have Hnna : ¬¬a, from not_not_of_not_implies (mt H Hna), absurd (not_not_elim Hnna) Hna) theorem forall_not_of_not_exists {A : Type} {p : A → Prop} [D : ∀x, decidable (p x)] (H : ¬∃x, p x) : ∀x, ¬p x := take x, or.elim (em (p x)) (assume Hp : p x, absurd (exists.intro x Hp) H) (assume Hnp : ¬p x, Hnp) theorem forall_of_not_exists_not {A : Type} {p : A → Prop} [D : decidable_pred p] : ¬(∃ x, ¬p x) → ∀ x, p x := assume Hne, take x, by_contradiction (assume Hnp : ¬ p x, Hne (exists.intro x Hnp)) theorem exists_not_of_not_forall {A : Type} {p : A → Prop} [D : ∀x, decidable (p x)] [D' : decidable (∃x, ¬p x)] (H : ¬∀x, p x) : ∃x, ¬p x := by_contradiction (assume H1 : ¬∃x, ¬p x, have H2 : ∀x, ¬¬p x, from forall_not_of_not_exists H1, have H3 : ∀x, p x, from take x, not_not_elim (H2 x), absurd H3 H) theorem exists_of_not_forall_not {A : Type} {p : A → Prop} [D : ∀x, decidable (p x)] [D' : decidable (∃x, ¬¬p x)] (H : ¬∀x, ¬ p x) : ∃x, p x := obtain x (H : ¬¬ p x), from exists_not_of_not_forall H, exists.intro x (not_not_elim H) theorem ne_self_iff_false {A : Type} (a : A) : (a ≠ a) ↔ false := iff.intro (assume H, false.of_ne H) (assume H, false.elim H) theorem eq_self_iff_true [simp] {A : Type} (a : A) : (a = a) ↔ true := iff_true_intro rfl theorem heq_self_iff_true [simp] {A : Type} (a : A) : (a == a) ↔ true := iff_true_intro (heq.refl a) theorem iff_not_self [simp] (a : Prop) : (a ↔ ¬a) ↔ false := iff.intro (assume H, have H' : ¬a, from assume Ha, (H ▸ Ha) Ha, H' (H⁻¹ ▸ H')) (assume H, false.elim H) theorem true_iff_false [simp] : (true ↔ false) ↔ false := not_true_iff_false ▸ (iff_not_self true) theorem false_iff_true [simp] : (false ↔ true) ↔ false := not_false_iff_true ▸ (iff_not_self false) theorem iff_true_iff [simp] (a : Prop) : (a ↔ true) ↔ a := iff.intro (assume H, of_iff_true H) (assume H, iff_true_intro H) theorem iff_false_iff_not [simp] (a : Prop) : (a ↔ false) ↔ ¬a := iff.intro (assume H, not_of_iff_false H) (assume H, iff_false_intro H)