-- Setoid example/test import macros definition reflexive {A : (Type U)} (r : A → A → Bool) := ∀ x, r x x definition symmetric {A : (Type U)} (r : A → A → Bool) := ∀ x y, r x y → r y x definition transitive {A : (Type U)} (r : A → A → Bool) := ∀ x y z, r x y → r y z → r x z -- We need to create a universe smaller than U for defining setoids. -- If we use (Type U) in the definition of setoid, then we will not be -- able to write s1 = s2 given s1 s2 : setoid. -- Writing the universes explicitily is really annoying. We should try to hide them. universe s ≥ 1 -- We currently don't have records. So, we use sigma types. definition setoid := sig A : (Type s), sig eq : A → A → Bool, (reflexive eq) # (symmetric eq) # (transitive eq) definition to_setoid (S : (Type s)) (eq : S → S → Bool) (Hrefl : reflexive eq) (Hsymm : symmetric eq) (Htrans : transitive eq) : setoid := pair S (pair eq (pair Hrefl (pair Hsymm Htrans))) -- The following definitions can be generated automatically. definition carrier (s : setoid) := proj1 s definition S_eq {s : setoid} : carrier s → carrier s → Bool := proj1 (proj2 s) infix 50 ≈ : S_eq definition S_refl {s : setoid} : ∀ x, x ≈ x := proj1 (proj2 (proj2 s)) definition S_symm {s : setoid} {x y : carrier s} : x ≈ y → y ≈ x := proj1 (proj2 (proj2 (proj2 s))) x y definition S_trans {s : setoid} {x y z : carrier s} : x ≈ y → y ≈ z → x ≈ z := proj2 (proj2 (proj2 (proj2 s))) x y z -- First example: the cross-product of two setoids is a setoid definition product (s1 s2 : setoid) : setoid := to_setoid (carrier s1 # carrier s2) (λ x y, proj1 x ≈ proj1 y ∧ proj2 x ≈ proj2 y) (take x, and_intro (S_refl (proj1 x)) (S_refl (proj2 x))) (take x y, assume H : proj1 x ≈ proj1 y ∧ proj2 x ≈ proj2 y, and_intro (S_symm (and_eliml H)) (S_symm (and_elimr H))) (take x y z, assume H1 : proj1 x ≈ proj1 y ∧ proj2 x ≈ proj2 y, assume H2 : proj1 y ≈ proj1 z ∧ proj2 y ≈ proj2 z, and_intro (S_trans (and_eliml H1) (and_eliml H2)) (S_trans (and_elimr H1) (and_elimr H2))) scope -- We need to extend the elaborator to be able to write -- p1 p2 : product s1 s2 set_option pp::implicit true check λ (s1 s2 : setoid) (p1 p2 : carrier (product s1 s2)), p1 ≈ p2 end definition morphism (s1 s2 : setoid) := sig f : carrier s1 → carrier s2, ∀ x y, x ≈ y → f x ≈ f y definition morphism_intro {s1 s2 : setoid} (f : carrier s1 → carrier s2) (H : ∀ x y, x ≈ y → f x ≈ f y) : morphism s1 s2 := pair f H definition f {s1 s2 : setoid} (m : morphism s1 s2) : carrier s1 → carrier s2 := proj1 m -- It would be nice to support (m.f x) as syntax sugar for (f m x) definition is_compat {s1 s2 : setoid} (m : morphism s1 s2) {x y : carrier s1} : x ≈ y → f m x ≈ f m y := proj2 m x y -- Second example: the composition of two morphism is a morphism definition compose {s1 s2 s3 : setoid} (m1 : morphism s1 s2) (m2 : morphism s2 s3) : morphism s1 s3 := morphism_intro (λ x, f m2 (f m1 x)) (take x y, assume Hxy : x ≈ y, have Hfxy : f m1 x ≈ f m1 y, from is_compat m1 Hxy, show f m2 (f m1 x) ≈ f m2 (f m1 y), from is_compat m2 Hfxy)