/- Copyright (c) 2014 Parikshit Khanna. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Parikshit Khanna, Jeremy Avigad, Leonardo de Moura, Floris van Doorn Basic properties of lists. -/ import logic tools.helper_tactics data.nat.order data.nat.sub open eq.ops nat prod function option inductive list (T : Type) : Type := | nil {} : list T | cons : T → list T → list T protected definition list.is_inhabited [instance] (A : Type) : inhabited (list A) := inhabited.mk list.nil namespace list notation h :: t := cons h t notation `[` l:(foldr `, ` (h t, cons h t) nil `]`) := l variable {T : Type} lemma cons_ne_nil [simp] (a : T) (l : list T) : a::l ≠ [] := by contradiction lemma head_eq_of_cons_eq {A : Type} {h₁ h₂ : A} {t₁ t₂ : list A} : (h₁::t₁) = (h₂::t₂) → h₁ = h₂ := assume Peq, list.no_confusion Peq (assume Pheq Pteq, Pheq) lemma tail_eq_of_cons_eq {A : Type} {h₁ h₂ : A} {t₁ t₂ : list A} : (h₁::t₁) = (h₂::t₂) → t₁ = t₂ := assume Peq, list.no_confusion Peq (assume Pheq Pteq, Pteq) lemma cons_inj {A : Type} {a : A} : injective (cons a) := take l₁ l₂, assume Pe, tail_eq_of_cons_eq Pe /- append -/ definition append : list T → list T → list T | [] l := l | (h :: s) t := h :: (append s t) notation l₁ ++ l₂ := append l₁ l₂ theorem append_nil_left [simp] (t : list T) : [] ++ t = t := rfl theorem append_cons [simp] (x : T) (s t : list T) : (x::s) ++ t = x::(s ++ t) := rfl theorem append_nil_right [simp] : ∀ (t : list T), t ++ [] = t := by rec_inst_simp theorem append.assoc [simp] : ∀ (s t u : list T), s ++ t ++ u = s ++ (t ++ u) := by rec_inst_simp /- length -/ definition length : list T → nat | [] := 0 | (a :: l) := length l + 1 theorem length_nil [simp] : length (@nil T) = 0 := rfl theorem length_cons [simp] (x : T) (t : list T) : length (x::t) = length t + 1 := rfl theorem length_append [simp] : ∀ (s t : list T), length (s ++ t) = length s + length t := by rec_inst_simp theorem eq_nil_of_length_eq_zero : ∀ {l : list T}, length l = 0 → l = [] | [] H := rfl | (a::s) H := by contradiction theorem ne_nil_of_length_eq_succ : ∀ {l : list T} {n : nat}, length l = succ n → l ≠ [] | [] n h := by contradiction | (a::l) n h := by contradiction /- concat -/ definition concat : Π (x : T), list T → list T | a [] := [a] | a (b :: l) := b :: concat a l theorem concat_nil [simp] (x : T) : concat x [] = [x] := rfl theorem concat_cons [simp] (x y : T) (l : list T) : concat x (y::l) = y::(concat x l) := rfl theorem concat_eq_append [simp] (a : T) : ∀ (l : list T), concat a l = l ++ [a] := by rec_inst_simp theorem concat_ne_nil [simp] (a : T) : ∀ (l : list T), concat a l ≠ [] := by intro l; induction l; repeat contradiction theorem length_concat [simp] (a : T) : ∀ (l : list T), length (concat a l) = length l + 1 := by rec_inst_simp theorem concat_append [simp] (a : T) : ∀ (l₁ l₂ : list T), concat a l₁ ++ l₂ = l₁ ++ a :: l₂ := by rec_inst_simp theorem append_concat (a : T) : ∀(l₁ l₂ : list T), l₁ ++ concat a l₂ = concat a (l₁ ++ l₂) := by rec_inst_simp /- last -/ definition last : Π l : list T, l ≠ [] → T | [] h := absurd rfl h | [a] h := a | (a₁::a₂::l) h := last (a₂::l) !cons_ne_nil lemma last_singleton [simp] (a : T) (h : [a] ≠ []) : last [a] h = a := rfl lemma last_cons_cons [simp] (a₁ a₂ : T) (l : list T) (h : a₁::a₂::l ≠ []) : last (a₁::a₂::l) h = last (a₂::l) !cons_ne_nil := rfl theorem last_congr {l₁ l₂ : list T} (h₁ : l₁ ≠ []) (h₂ : l₂ ≠ []) (h₃ : l₁ = l₂) : last l₁ h₁ = last l₂ h₂ := by subst l₁ theorem last_concat [simp] {x : T} : ∀ {l : list T} (h : concat x l ≠ []), last (concat x l) h = x | [] h := rfl | [a] h := rfl | (a₁::a₂::l) h := begin change last (a₁::a₂::concat x l) !cons_ne_nil = x, rewrite last_cons_cons, change last (concat x (a₂::l)) !concat_ne_nil = x, apply last_concat end -- add_rewrite append_nil append_cons /- reverse -/ definition reverse : list T → list T | [] := [] | (a :: l) := concat a (reverse l) theorem reverse_nil [simp] : reverse (@nil T) = [] := rfl theorem reverse_cons [simp] (x : T) (l : list T) : reverse (x::l) = concat x (reverse l) := rfl theorem reverse_singleton [simp] (x : T) : reverse [x] = [x] := rfl theorem reverse_append [simp] : ∀ (s t : list T), reverse (s ++ t) = (reverse t) ++ (reverse s) := by rec_inst_simp theorem reverse_reverse [simp] : ∀ (l : list T), reverse (reverse l) = l := by rec_inst_simp theorem concat_eq_reverse_cons (x : T) (l : list T) : concat x l = reverse (x :: reverse l) := by inst_simp theorem length_reverse : ∀ (l : list T), length (reverse l) = length l := by rec_inst_simp /- head and tail -/ definition head [h : inhabited T] : list T → T | [] := arbitrary T | (a :: l) := a theorem head_cons [simp] [h : inhabited T] (a : T) (l : list T) : head (a::l) = a := rfl theorem head_append [simp] [h : inhabited T] (t : list T) : ∀ {s : list T}, s ≠ [] → head (s ++ t) = head s := by rec_inst_simp definition tail : list T → list T | [] := [] | (a :: l) := l theorem tail_nil [simp] : tail (@nil T) = [] := rfl theorem tail_cons [simp] (a : T) (l : list T) : tail (a::l) = l := rfl theorem cons_head_tail [h : inhabited T] {l : list T} : l ≠ [] → (head l)::(tail l) = l := by rec_inst_simp /- list membership -/ definition mem : T → list T → Prop | a [] := false | a (b :: l) := a = b ∨ mem a l notation e ∈ s := mem e s notation e ∉ s := ¬ e ∈ s theorem mem_nil_iff (x : T) : x ∈ [] ↔ false := iff.rfl theorem not_mem_nil (x : T) : x ∉ [] := iff.mp !mem_nil_iff theorem mem_cons [simp] (x : T) (l : list T) : x ∈ x :: l := or.inl rfl theorem mem_cons_of_mem (y : T) {x : T} {l : list T} : x ∈ l → x ∈ y :: l := assume H, or.inr H theorem mem_cons_iff (x y : T) (l : list T) : x ∈ y::l ↔ (x = y ∨ x ∈ l) := iff.rfl theorem eq_or_mem_of_mem_cons {x y : T} {l : list T} : x ∈ y::l → x = y ∨ x ∈ l := assume h, h theorem mem_singleton {x a : T} : x ∈ [a] → x = a := suppose x ∈ [a], or.elim (eq_or_mem_of_mem_cons this) (suppose x = a, this) (suppose x ∈ [], absurd this !not_mem_nil) theorem mem_of_mem_cons_of_mem {a b : T} {l : list T} : a ∈ b::l → b ∈ l → a ∈ l := assume ainbl binl, or.elim (eq_or_mem_of_mem_cons ainbl) (suppose a = b, by substvars; exact binl) (suppose a ∈ l, this) theorem mem_or_mem_of_mem_append {x : T} {s t : list T} : x ∈ s ++ t → x ∈ s ∨ x ∈ t := list.induction_on s or.inr (take y s, assume IH : x ∈ s ++ t → x ∈ s ∨ x ∈ t, suppose x ∈ y::s ++ t, have x = y ∨ x ∈ s ++ t, from this, have x = y ∨ x ∈ s ∨ x ∈ t, from or_of_or_of_imp_right this IH, iff.elim_right or.assoc this) theorem mem_append_of_mem_or_mem {x : T} {s t : list T} : x ∈ s ∨ x ∈ t → x ∈ s ++ t := list.induction_on s (take H, or.elim H false.elim (assume H, H)) (take y s, assume IH : x ∈ s ∨ x ∈ t → x ∈ s ++ t, suppose x ∈ y::s ∨ x ∈ t, or.elim this (suppose x ∈ y::s, or.elim (eq_or_mem_of_mem_cons this) (suppose x = y, or.inl this) (suppose x ∈ s, or.inr (IH (or.inl this)))) (suppose x ∈ t, or.inr (IH (or.inr this)))) theorem mem_append_iff (x : T) (s t : list T) : x ∈ s ++ t ↔ x ∈ s ∨ x ∈ t := iff.intro mem_or_mem_of_mem_append mem_append_of_mem_or_mem theorem not_mem_of_not_mem_append_left {x : T} {s t : list T} : x ∉ s++t → x ∉ s := λ nxinst xins, absurd (mem_append_of_mem_or_mem (or.inl xins)) nxinst theorem not_mem_of_not_mem_append_right {x : T} {s t : list T} : x ∉ s++t → x ∉ t := λ nxinst xint, absurd (mem_append_of_mem_or_mem (or.inr xint)) nxinst theorem not_mem_append {x : T} {s t : list T} : x ∉ s → x ∉ t → x ∉ s++t := λ nxins nxint xinst, or.elim (mem_or_mem_of_mem_append xinst) (λ xins, by contradiction) (λ xint, by contradiction) lemma length_pos_of_mem {a : T} : ∀ {l : list T}, a ∈ l → 0 < length l | [] := assume Pinnil, by contradiction | (b::l) := assume Pin, !zero_lt_succ section local attribute mem [reducible] local attribute append [reducible] theorem mem_split {x : T} {l : list T} : x ∈ l → ∃s t : list T, l = s ++ (x::t) := list.induction_on l (suppose x ∈ [], false.elim (iff.elim_left !mem_nil_iff this)) (take y l, assume IH : x ∈ l → ∃s t : list T, l = s ++ (x::t), suppose x ∈ y::l, or.elim (eq_or_mem_of_mem_cons this) (suppose x = y, exists.intro [] (!exists.intro (this ▸ rfl))) (suppose x ∈ l, obtain s (H2 : ∃t : list T, l = s ++ (x::t)), from IH this, obtain t (H3 : l = s ++ (x::t)), from H2, have y :: l = (y::s) ++ (x::t), from H3 ▸ rfl, !exists.intro (!exists.intro this))) end theorem mem_append_left {a : T} {l₁ : list T} (l₂ : list T) : a ∈ l₁ → a ∈ l₁ ++ l₂ := assume ainl₁, mem_append_of_mem_or_mem (or.inl ainl₁) theorem mem_append_right {a : T} (l₁ : list T) {l₂ : list T} : a ∈ l₂ → a ∈ l₁ ++ l₂ := assume ainl₂, mem_append_of_mem_or_mem (or.inr ainl₂) definition decidable_mem [instance] [H : decidable_eq T] (x : T) (l : list T) : decidable (x ∈ l) := list.rec_on l (decidable.inr (not_of_iff_false !mem_nil_iff)) (take (h : T) (l : list T) (iH : decidable (x ∈ l)), show decidable (x ∈ h::l), from decidable.rec_on iH (assume Hp : x ∈ l, decidable.rec_on (H x h) (suppose x = h, decidable.inl (or.inl this)) (suppose x ≠ h, decidable.inl (or.inr Hp))) (suppose ¬x ∈ l, decidable.rec_on (H x h) (suppose x = h, decidable.inl (or.inl this)) (suppose x ≠ h, have ¬(x = h ∨ x ∈ l), from suppose x = h ∨ x ∈ l, or.elim this (suppose x = h, by contradiction) (suppose x ∈ l, by contradiction), have ¬x ∈ h::l, from iff.elim_right (not_iff_not_of_iff !mem_cons_iff) this, decidable.inr this))) theorem mem_of_ne_of_mem {x y : T} {l : list T} (H₁ : x ≠ y) (H₂ : x ∈ y :: l) : x ∈ l := or.elim (eq_or_mem_of_mem_cons H₂) (λe, absurd e H₁) (λr, r) theorem ne_of_not_mem_cons {a b : T} {l : list T} : a ∉ b::l → a ≠ b := assume nin aeqb, absurd (or.inl aeqb) nin theorem not_mem_of_not_mem_cons {a b : T} {l : list T} : a ∉ b::l → a ∉ l := assume nin nainl, absurd (or.inr nainl) nin lemma not_mem_cons_of_ne_of_not_mem {x y : T} {l : list T} : x ≠ y → x ∉ l → x ∉ y::l := assume P1 P2, not.intro (assume Pxin, absurd (eq_or_mem_of_mem_cons Pxin) (not_or P1 P2)) lemma ne_and_not_mem_of_not_mem_cons {x y : T} {l : list T} : x ∉ y::l → x ≠ y ∧ x ∉ l := assume P, and.intro (ne_of_not_mem_cons P) (not_mem_of_not_mem_cons P) definition sublist (l₁ l₂ : list T) := ∀ ⦃a : T⦄, a ∈ l₁ → a ∈ l₂ infix ⊆ := sublist theorem nil_sub [simp] (l : list T) : [] ⊆ l := λ b i, false.elim (iff.mp (mem_nil_iff b) i) theorem sub.refl [simp] (l : list T) : l ⊆ l := λ b i, i theorem sub.trans {l₁ l₂ l₃ : list T} (H₁ : l₁ ⊆ l₂) (H₂ : l₂ ⊆ l₃) : l₁ ⊆ l₃ := λ b i, H₂ (H₁ i) theorem sub_cons [simp] (a : T) (l : list T) : l ⊆ a::l := λ b i, or.inr i theorem sub_of_cons_sub {a : T} {l₁ l₂ : list T} : a::l₁ ⊆ l₂ → l₁ ⊆ l₂ := λ s b i, s b (mem_cons_of_mem _ i) theorem cons_sub_cons {l₁ l₂ : list T} (a : T) (s : l₁ ⊆ l₂) : (a::l₁) ⊆ (a::l₂) := λ b Hin, or.elim (eq_or_mem_of_mem_cons Hin) (λ e : b = a, or.inl e) (λ i : b ∈ l₁, or.inr (s i)) theorem sub_append_left [simp] (l₁ l₂ : list T) : l₁ ⊆ l₁++l₂ := λ b i, iff.mpr (mem_append_iff b l₁ l₂) (or.inl i) theorem sub_append_right [simp] (l₁ l₂ : list T) : l₂ ⊆ l₁++l₂ := λ b i, iff.mpr (mem_append_iff b l₁ l₂) (or.inr i) theorem sub_cons_of_sub (a : T) {l₁ l₂ : list T} : l₁ ⊆ l₂ → l₁ ⊆ (a::l₂) := λ (s : l₁ ⊆ l₂) (x : T) (i : x ∈ l₁), or.inr (s i) theorem sub_app_of_sub_left (l l₁ l₂ : list T) : l ⊆ l₁ → l ⊆ l₁++l₂ := λ (s : l ⊆ l₁) (x : T) (xinl : x ∈ l), have x ∈ l₁, from s xinl, mem_append_of_mem_or_mem (or.inl this) theorem sub_app_of_sub_right (l l₁ l₂ : list T) : l ⊆ l₂ → l ⊆ l₁++l₂ := λ (s : l ⊆ l₂) (x : T) (xinl : x ∈ l), have x ∈ l₂, from s xinl, mem_append_of_mem_or_mem (or.inr this) theorem cons_sub_of_sub_of_mem {a : T} {l m : list T} : a ∈ m → l ⊆ m → a::l ⊆ m := λ (ainm : a ∈ m) (lsubm : l ⊆ m) (x : T) (xinal : x ∈ a::l), or.elim (eq_or_mem_of_mem_cons xinal) (suppose x = a, by substvars; exact ainm) (suppose x ∈ l, lsubm this) theorem app_sub_of_sub_of_sub {l₁ l₂ l : list T} : l₁ ⊆ l → l₂ ⊆ l → l₁++l₂ ⊆ l := λ (l₁subl : l₁ ⊆ l) (l₂subl : l₂ ⊆ l) (x : T) (xinl₁l₂ : x ∈ l₁++l₂), or.elim (mem_or_mem_of_mem_append xinl₁l₂) (suppose x ∈ l₁, l₁subl this) (suppose x ∈ l₂, l₂subl this) /- find -/ section variable [H : decidable_eq T] include H definition find : T → list T → nat | a [] := 0 | a (b :: l) := if a = b then 0 else succ (find a l) theorem find_nil [simp] (x : T) : find x [] = 0 := rfl theorem find_cons (x y : T) (l : list T) : find x (y::l) = if x = y then 0 else succ (find x l) := rfl theorem find_cons_of_eq {x y : T} (l : list T) : x = y → find x (y::l) = 0 := assume e, if_pos e theorem find_cons_of_ne {x y : T} (l : list T) : x ≠ y → find x (y::l) = succ (find x l) := assume n, if_neg n theorem find_of_not_mem {l : list T} {x : T} : ¬x ∈ l → find x l = length l := list.rec_on l (suppose ¬x ∈ [], rfl) (take y l, assume iH : ¬x ∈ l → find x l = length l, suppose ¬x ∈ y::l, have ¬(x = y ∨ x ∈ l), from iff.elim_right (not_iff_not_of_iff !mem_cons_iff) this, have ¬x = y ∧ ¬x ∈ l, from (iff.elim_left not_or_iff_not_and_not this), calc find x (y::l) = if x = y then 0 else succ (find x l) : !find_cons ... = succ (find x l) : if_neg (and.elim_left this) ... = succ (length l) : {iH (and.elim_right this)} ... = length (y::l) : !length_cons⁻¹) lemma find_le_length : ∀ {a} {l : list T}, find a l ≤ length l | a [] := !le.refl | a (b::l) := decidable.rec_on (H a b) (assume Peq, by rewrite [find_cons_of_eq l Peq]; exact !zero_le) (assume Pne, begin rewrite [find_cons_of_ne l Pne, length_cons], apply succ_le_succ, apply find_le_length end) lemma not_mem_of_find_eq_length : ∀ {a} {l : list T}, find a l = length l → a ∉ l | a [] := assume Peq, !not_mem_nil | a (b::l) := decidable.rec_on (H a b) (assume Peq, by rewrite [find_cons_of_eq l Peq, length_cons]; contradiction) (assume Pne, begin rewrite [find_cons_of_ne l Pne, length_cons, mem_cons_iff], intro Plen, apply (not_or Pne), exact not_mem_of_find_eq_length (succ.inj Plen) end) lemma find_lt_length {a} {l : list T} (Pin : a ∈ l) : find a l < length l := begin apply nat.lt_of_le_and_ne, apply find_le_length, apply not.intro, intro Peq, exact absurd Pin (not_mem_of_find_eq_length Peq) end end /- nth element -/ section nth definition nth : list T → nat → option T | [] n := none | (a :: l) 0 := some a | (a :: l) (n+1) := nth l n theorem nth_zero [simp] (a : T) (l : list T) : nth (a :: l) 0 = some a := rfl theorem nth_succ [simp] (a : T) (l : list T) (n : nat) : nth (a::l) (succ n) = nth l n := rfl theorem nth_eq_some : ∀ {l : list T} {n : nat}, n < length l → Σ a : T, nth l n = some a | [] n h := absurd h !not_lt_zero | (a::l) 0 h := ⟨a, rfl⟩ | (a::l) (succ n) h := have n < length l, from lt_of_succ_lt_succ h, obtain (r : T) (req : nth l n = some r), from nth_eq_some this, ⟨r, by rewrite [nth_succ, req]⟩ open decidable theorem find_nth [decidable_eq T] {a : T} : ∀ {l}, a ∈ l → nth l (find a l) = some a | [] ain := absurd ain !not_mem_nil | (b::l) ainbl := by_cases (λ aeqb : a = b, by rewrite [find_cons_of_eq _ aeqb, nth_zero, aeqb]) (λ aneb : a ≠ b, or.elim (eq_or_mem_of_mem_cons ainbl) (λ aeqb : a = b, absurd aeqb aneb) (λ ainl : a ∈ l, by rewrite [find_cons_of_ne _ aneb, nth_succ, find_nth ainl])) definition inth [h : inhabited T] (l : list T) (n : nat) : T := match nth l n with | some a := a | none := arbitrary T end theorem inth_zero [inhabited T] (a : T) (l : list T) : inth (a :: l) 0 = a := rfl theorem inth_succ [inhabited T] (a : T) (l : list T) (n : nat) : inth (a::l) (n+1) = inth l n := rfl end nth section ith definition ith : Π (l : list T) (i : nat), i < length l → T | nil i h := absurd h !not_lt_zero | (x::xs) 0 h := x | (x::xs) (succ i) h := ith xs i (lt_of_succ_lt_succ h) lemma ith_zero [simp] (a : T) (l : list T) (h : 0 < length (a::l)) : ith (a::l) 0 h = a := rfl lemma ith_succ [simp] (a : T) (l : list T) (i : nat) (h : succ i < length (a::l)) : ith (a::l) (succ i) h = ith l i (lt_of_succ_lt_succ h) := rfl end ith open decidable definition has_decidable_eq {A : Type} [H : decidable_eq A] : ∀ l₁ l₂ : list A, decidable (l₁ = l₂) | [] [] := inl rfl | [] (b::l₂) := inr (by contradiction) | (a::l₁) [] := inr (by contradiction) | (a::l₁) (b::l₂) := match H a b with | inl Hab := match has_decidable_eq l₁ l₂ with | inl He := inl (by congruence; repeat assumption) | inr Hn := inr (by intro H; injection H; contradiction) end | inr Hnab := inr (by intro H; injection H; contradiction) end /- quasiequal a l l' means that l' is exactly l, with a added once somewhere -/ section qeq variable {A : Type} inductive qeq (a : A) : list A → list A → Prop := | qhead : ∀ l, qeq a l (a::l) | qcons : ∀ (b : A) {l l' : list A}, qeq a l l' → qeq a (b::l) (b::l') open qeq notation l' `≈`:50 a `|` l:50 := qeq a l l' theorem qeq_app : ∀ (l₁ : list A) (a : A) (l₂ : list A), l₁++(a::l₂) ≈ a|l₁++l₂ | [] a l₂ := qhead a l₂ | (x::xs) a l₂ := qcons x (qeq_app xs a l₂) theorem mem_head_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → a ∈ l₁ := take q, qeq.induction_on q (λ l, !mem_cons) (λ b l l' q r, or.inr r) theorem mem_tail_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → ∀ x, x ∈ l₂ → x ∈ l₁ := take q, qeq.induction_on q (λ l x i, or.inr i) (λ b l l' q r x xinbl, or.elim (eq_or_mem_of_mem_cons xinbl) (λ xeqb : x = b, xeqb ▸ mem_cons x l') (λ xinl : x ∈ l, or.inr (r x xinl))) theorem mem_cons_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → ∀ x, x ∈ l₁ → x ∈ a::l₂ := take q, qeq.induction_on q (λ l x i, i) (λ b l l' q r x xinbl', or.elim (eq_or_mem_of_mem_cons xinbl') (λ xeqb : x = b, xeqb ▸ or.inr (mem_cons x l)) (λ xinl' : x ∈ l', or.elim (eq_or_mem_of_mem_cons (r x xinl')) (λ xeqa : x = a, xeqa ▸ mem_cons x (b::l)) (λ xinl : x ∈ l, or.inr (or.inr xinl)))) theorem length_eq_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → length l₁ = succ (length l₂) := take q, qeq.induction_on q (λ l, rfl) (λ b l l' q r, by rewrite [*length_cons, r]) theorem qeq_of_mem {a : A} {l : list A} : a ∈ l → (∃l', l≈a|l') := list.induction_on l (λ h : a ∈ nil, absurd h (not_mem_nil a)) (λ x xs r ainxxs, or.elim (eq_or_mem_of_mem_cons ainxxs) (λ aeqx : a = x, assert aux : ∃ l, x::xs≈x|l, from exists.intro xs (qhead x xs), by rewrite aeqx; exact aux) (λ ainxs : a ∈ xs, have ∃l', xs ≈ a|l', from r ainxs, obtain (l' : list A) (q : xs ≈ a|l'), from this, have x::xs ≈ a | x::l', from qcons x q, exists.intro (x::l') this)) theorem qeq_split {a : A} {l l' : list A} : l'≈a|l → ∃l₁ l₂, l = l₁++l₂ ∧ l' = l₁++(a::l₂) := take q, qeq.induction_on q (λ t, have t = []++t ∧ a::t = []++(a::t), from and.intro rfl rfl, exists.intro [] (exists.intro t this)) (λ b t t' q r, obtain (l₁ l₂ : list A) (h : t = l₁++l₂ ∧ t' = l₁++(a::l₂)), from r, have b::t = (b::l₁)++l₂ ∧ b::t' = (b::l₁)++(a::l₂), begin rewrite [and.elim_right h, and.elim_left h], constructor, repeat reflexivity end, exists.intro (b::l₁) (exists.intro l₂ this)) theorem sub_of_mem_of_sub_of_qeq {a : A} {l : list A} {u v : list A} : a ∉ l → a::l ⊆ v → v≈a|u → l ⊆ u := λ (nainl : a ∉ l) (s : a::l ⊆ v) (q : v≈a|u) (x : A) (xinl : x ∈ l), have x ∈ v, from s (or.inr xinl), have x ∈ a::u, from mem_cons_of_qeq q x this, or.elim (eq_or_mem_of_mem_cons this) (suppose x = a, by substvars; contradiction) (suppose x ∈ u, this) end qeq section firstn variable {A : Type} definition firstn : nat → list A → list A | 0 l := [] | (n+1) [] := [] | (n+1) (a::l) := a :: firstn n l lemma firstn_zero [simp] : ∀ (l : list A), firstn 0 l = [] := by intros; reflexivity lemma firstn_nil [simp] : ∀ n, firstn n [] = ([] : list A) | 0 := rfl | (n+1) := rfl lemma firstn_cons : ∀ n (a : A) (l : list A), firstn (succ n) (a::l) = a :: firstn n l := by intros; reflexivity lemma firstn_all : ∀ (l : list A), firstn (length l) l = l | [] := rfl | (a::l) := begin unfold [length, firstn], rewrite firstn_all end lemma firstn_all_of_ge : ∀ {n} {l : list A}, n ≥ length l → firstn n l = l | 0 [] h := rfl | 0 (a::l) h := absurd h (not_le_of_gt !succ_pos) | (n+1) [] h := rfl | (n+1) (a::l) h := begin unfold firstn, rewrite [firstn_all_of_ge (le_of_succ_le_succ h)] end lemma firstn_firstn : ∀ (n m) (l : list A), firstn n (firstn m l) = firstn (min n m) l | n 0 l := by rewrite [min_zero, firstn_zero, firstn_nil] | 0 m l := by rewrite [zero_min] | (succ n) (succ m) nil := by rewrite [*firstn_nil] | (succ n) (succ m) (a::l) := by rewrite [*firstn_cons, firstn_firstn, min_succ_succ] lemma length_firstn_le : ∀ (n) (l : list A), length (firstn n l) ≤ n | 0 l := by rewrite [firstn_zero] | (succ n) (a::l) := by rewrite [firstn_cons, length_cons, add_one]; apply succ_le_succ; apply length_firstn_le | (succ n) [] := by rewrite [firstn_nil, length_nil]; apply zero_le lemma length_firstn_eq : ∀ (n) (l : list A), length (firstn n l) = min n (length l) | 0 l := by rewrite [firstn_zero, zero_min] | (succ n) (a::l) := by rewrite [firstn_cons, *length_cons, *add_one, min_succ_succ, length_firstn_eq] | (succ n) [] := by rewrite [firstn_nil] end firstn section dropn variables {A : Type} -- 'dropn n l' drops the first 'n' elements of 'l' definition dropn : ℕ → list A → list A | 0 a := a | (succ n) [] := [] | (succ n) (x::r) := dropn n r theorem length_dropn : ∀ (i : ℕ) (l : list A), length (dropn i l) = length l - i | 0 l := rfl | (succ i) [] := calc length (dropn (succ i) []) = 0 - succ i : nat.zero_sub (succ i) | (succ i) (x::l) := calc length (dropn (succ i) (x::l)) = length (dropn i l) : rfl ... = length l - i : length_dropn i l ... = succ (length l) - succ i : succ_sub_succ (length l) i end dropn section count variable {A : Type} variable [decA : decidable_eq A] include decA definition count (a : A) : list A → nat | [] := 0 | (x::xs) := if a = x then succ (count xs) else count xs lemma count_nil (a : A) : count a [] = 0 := rfl lemma count_cons (a b : A) (l : list A) : count a (b::l) = if a = b then succ (count a l) else count a l := rfl lemma count_cons_eq (a : A) (l : list A) : count a (a::l) = succ (count a l) := if_pos rfl lemma count_cons_of_ne {a b : A} (h : a ≠ b) (l : list A) : count a (b::l) = count a l := if_neg h lemma count_cons_ge_count (a b : A) (l : list A) : count a (b::l) ≥ count a l := by_cases (suppose a = b, begin subst b, rewrite count_cons_eq, apply le_succ end) (suppose a ≠ b, begin rewrite (count_cons_of_ne this), apply le.refl end) lemma count_singleton (a : A) : count a [a] = 1 := by rewrite count_cons_eq lemma count_append (a : A) : ∀ l₁ l₂, count a (l₁++l₂) = count a l₁ + count a l₂ | [] l₂ := by rewrite [append_nil_left, count_nil, zero_add] | (b::l₁) l₂ := by_cases (suppose a = b, by rewrite [-this, append_cons, *count_cons_eq, succ_add, count_append]) (suppose a ≠ b, by rewrite [append_cons, *count_cons_of_ne this, count_append]) lemma count_concat (a : A) (l : list A) : count a (concat a l) = succ (count a l) := by rewrite [concat_eq_append, count_append, count_singleton] lemma mem_of_count_gt_zero : ∀ {a : A} {l : list A}, count a l > 0 → a ∈ l | a [] h := absurd h !lt.irrefl | a (b::l) h := by_cases (suppose a = b, begin subst b, apply mem_cons end) (suppose a ≠ b, have count a l > 0, by rewrite [count_cons_of_ne this at h]; exact h, have a ∈ l, from mem_of_count_gt_zero this, show a ∈ b::l, from mem_cons_of_mem _ this) lemma count_gt_zero_of_mem : ∀ {a : A} {l : list A}, a ∈ l → count a l > 0 | a [] h := absurd h !not_mem_nil | a (b::l) h := or.elim h (suppose a = b, begin subst b, rewrite count_cons_eq, apply zero_lt_succ end) (suppose a ∈ l, calc count a (b::l) ≥ count a l : count_cons_ge_count ... > 0 : count_gt_zero_of_mem this) lemma count_eq_zero_of_not_mem {a : A} {l : list A} (h : a ∉ l) : count a l = 0 := match count a l with | zero := suppose count a l = zero, this | (succ n) := suppose count a l = succ n, absurd (mem_of_count_gt_zero (begin rewrite this, exact dec_trivial end)) h end rfl end count end list attribute list.has_decidable_eq [instance] attribute list.decidable_mem [instance]