/* Copyright (c) 2013 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura Soonho Kong */ #include #include #include #include #include #include "util/list_fn.h" #include "util/hash.h" #include "util/buffer.h" #include "util/object_serializer.h" #include "kernel/expr.h" #include "kernel/expr_eq_fn.h" #include "kernel/free_vars.h" #include "kernel/max_sharing.h" namespace lean { static expr g_dummy(mk_var(0)); expr::expr():expr(g_dummy) {} unsigned hash_levels(levels const & ls) { unsigned r = 23; for (auto const & l : ls) r = hash(hash(l), r); return r; } expr_cell::expr_cell(expr_kind k, unsigned h, bool has_mv, bool has_local, bool has_param_univ): m_kind(static_cast(k)), m_flags(0), m_has_mv(has_mv), m_has_local(has_local), m_has_param_univ(has_param_univ), m_hash(h), m_rc(0) { // m_hash_alloc does not need to be a unique identifier. // We want diverse hash codes because given expr_cell * c1 and expr_cell * c2, // if c1 != c2, then there is high probability c1->m_hash_alloc != c2->m_hash_alloc. // Remark: using pointer address as a hash code is not a good idea. // - each execution run will behave differently. // - the hash is not diverse enough static LEAN_THREAD_LOCAL unsigned g_hash_alloc_counter = 0; m_hash_alloc = g_hash_alloc_counter; g_hash_alloc_counter++; } void expr_cell::dec_ref(expr & e, buffer & todelete) { if (e.m_ptr) { expr_cell * c = e.steal_ptr(); lean_assert(!(e.m_ptr)); if (c->dec_ref_core()) todelete.push_back(c); } } optional expr_cell::is_arrow() const { // it is stored in bits 0-1 unsigned r = (m_flags & (1+2)); if (r == 0) { return optional(); } else if (r == 1) { return optional(true); } else { lean_assert(r == 2); return optional(false); } } void expr_cell::set_is_arrow(bool flag) { unsigned mask = flag ? 1 : 2; m_flags |= mask; lean_assert(is_arrow() && *is_arrow() == flag); } bool is_meta(expr const & e) { expr const * it = &e; while (is_app(*it)) { it = &(app_fn(*it)); } return is_metavar(*it); } // Expr variables expr_var::expr_var(unsigned idx): expr_cell(expr_kind::Var, idx, false, false, false), m_vidx(idx) { if (idx == std::numeric_limits::max()) throw exception("invalid free variable index, de Bruijn index is too big"); } // Expr constants expr_const::expr_const(name const & n, levels const & ls): expr_cell(expr_kind::Constant, ::lean::hash(n.hash(), hash_levels(ls)), has_meta(ls), false, has_param(ls)), m_name(n), m_levels(ls) {} // Expr metavariables and local variables expr_mlocal::expr_mlocal(bool is_meta, name const & n, expr const & t): expr_cell(is_meta ? expr_kind::Meta : expr_kind::Local, n.hash(), is_meta || t.has_metavar(), !is_meta || t.has_local(), t.has_param_univ()), m_name(n), m_type(t) {} void expr_mlocal::dealloc(buffer & todelete) { dec_ref(m_type, todelete); delete(this); } // Composite expressions expr_composite::expr_composite(expr_kind k, unsigned h, bool has_mv, bool has_local, bool has_param_univ, unsigned d, unsigned fv_range): expr_cell(k, h, has_mv, has_local, has_param_univ), m_depth(d), m_free_var_range(fv_range) {} // Expr applications expr_app::expr_app(expr const & fn, expr const & arg): expr_composite(expr_kind::App, ::lean::hash(fn.hash(), arg.hash()), fn.has_metavar() || arg.has_metavar(), fn.has_local() || arg.has_local(), fn.has_param_univ() || arg.has_param_univ(), std::max(get_depth(fn), get_depth(arg)) + 1, std::max(get_free_var_range(fn), get_free_var_range(arg))), m_fn(fn), m_arg(arg) {} void expr_app::dealloc(buffer & todelete) { dec_ref(m_fn, todelete); dec_ref(m_arg, todelete); delete(this); } static unsigned dec(unsigned k) { return k == 0 ? 0 : k - 1; } // Expr binders (Lambda, Pi) expr_binder::expr_binder(expr_kind k, name const & n, expr const & t, expr const & b): expr_composite(k, ::lean::hash(t.hash(), b.hash()), t.has_metavar() || b.has_metavar(), t.has_local() || b.has_local(), t.has_param_univ() || b.has_param_univ(), std::max(get_depth(t), get_depth(b)) + 1, std::max(get_free_var_range(t), dec(get_free_var_range(b)))), m_name(n), m_domain(t), m_body(b) { lean_assert(k == expr_kind::Lambda || k == expr_kind::Pi); } void expr_binder::dealloc(buffer & todelete) { dec_ref(m_body, todelete); dec_ref(m_domain, todelete); delete(this); } // Expr Sort expr_sort::expr_sort(level const & l): expr_cell(expr_kind::Sort, ::lean::hash(l), has_meta(l), false, has_param(l)), m_level(l) { } expr_sort::~expr_sort() {} // Expr Let expr_let::expr_let(name const & n, expr const & t, expr const & v, expr const & b): expr_composite(expr_kind::Let, ::lean::hash(v.hash(), b.hash()), t.has_metavar() || v.has_metavar() || b.has_metavar(), t.has_local() || v.has_local() || b.has_local(), t.has_param_univ() || v.has_param_univ() || b.has_param_univ(), std::max({get_depth(t), get_depth(v), get_depth(b)}) + 1, std::max({get_free_var_range(t), dec(get_free_var_range(v)), dec(get_free_var_range(b))})), m_name(n), m_type(t), m_value(v), m_body(b) { } void expr_let::dealloc(buffer & todelete) { dec_ref(m_body, todelete); dec_ref(m_value, todelete); dec_ref(m_type, todelete); delete(this); } expr_let::~expr_let() {} // Macro attachment int macro::push_lua(lua_State *) const { return 0; } // NOLINT void macro::display(std::ostream & out) const { out << get_name(); } bool macro::operator==(macro const & other) const { return typeid(*this) == typeid(other); } bool macro::operator<(macro const & other) const { if (get_name() == other.get_name()) return lt(other); else return get_name() < other.get_name(); } format macro::pp(formatter const &, options const &) const { return format(get_name()); } bool macro::is_atomic_pp(bool, bool) const { return true; } unsigned macro::hash() const { return get_name().hash(); } typedef std::unordered_map macro_readers; static std::unique_ptr g_macro_readers; macro_readers & get_macro_readers() { if (!g_macro_readers) g_macro_readers.reset(new macro_readers()); return *(g_macro_readers.get()); } void macro::register_deserializer(std::string const & k, macro::reader rd) { macro_readers & readers = get_macro_readers(); lean_assert(readers.find(k) == readers.end()); readers[k] = rd; } static expr read_macro(deserializer & d) { auto k = d.read_string(); macro_readers & readers = get_macro_readers(); auto it = readers.find(k); lean_assert(it != readers.end()); return it->second(d); } expr_macro::expr_macro(macro * m): expr_cell(expr_kind::Macro, m->hash(), false, false, false), m_macro(m) { m_macro->inc_ref(); } expr_macro::~expr_macro() { m_macro->dec_ref(); } void expr_cell::dealloc() { try { buffer todo; todo.push_back(this); while (!todo.empty()) { expr_cell * it = todo.back(); todo.pop_back(); lean_assert(it->get_rc() == 0); switch (it->kind()) { case expr_kind::Var: delete static_cast(it); break; case expr_kind::Macro: delete static_cast(it); break; case expr_kind::Meta: case expr_kind::Local: static_cast(it)->dealloc(todo); break; case expr_kind::Constant: delete static_cast(it); break; case expr_kind::Sort: delete static_cast(it); break; case expr_kind::App: static_cast(it)->dealloc(todo); break; case expr_kind::Lambda: case expr_kind::Pi: static_cast(it)->dealloc(todo); break; case expr_kind::Let: static_cast(it)->dealloc(todo); break; } } } catch (std::bad_alloc&) { // We need this catch, because push_back may fail when expanding the buffer. // In this case, we avoid the crash, and "accept" the memory leak. } } // Auxiliary constructors expr mk_app(expr const & f, unsigned num_args, expr const * args) { expr r = f; for (unsigned i = 0; i < num_args; i++) r = mk_app(r, args[i]); return r; } expr mk_app(unsigned num_args, expr const * args) { lean_assert(num_args >= 2); return mk_app(mk_app(args[0], args[1]), num_args - 2, args+2); } expr mk_rev_app(expr const & f, unsigned num_args, expr const * args) { expr r = f; unsigned i = num_args; while (i > 0) { --i; r = mk_app(r, args[i]); } return r; } expr mk_rev_app(unsigned num_args, expr const * args) { lean_assert(num_args >= 2); return mk_rev_app(mk_app(args[num_args-1], args[num_args-2]), num_args-2, args); } static name g_default_var_name("a"); bool is_default_var_name(name const & n) { return n == g_default_var_name; } expr mk_arrow(expr const & t, expr const & e) { return mk_pi(g_default_var_name, t, e); } expr Bool = mk_sort(mk_level_zero()); expr Type = mk_sort(mk_level_one()); expr mk_Bool() { return Bool; } expr mk_Type() { return Type; } unsigned get_depth(expr const & e) { switch (e.kind()) { case expr_kind::Var: case expr_kind::Constant: case expr_kind::Sort: case expr_kind::Meta: case expr_kind::Local: case expr_kind::Macro: return 1; case expr_kind::Lambda: case expr_kind::Pi: case expr_kind::App: case expr_kind::Let: return static_cast(e.raw())->m_depth; } lean_unreachable(); // LCOV_EXCL_LINE } unsigned get_free_var_range(expr const & e) { switch (e.kind()) { case expr_kind::Var: return var_idx(e) + 1; case expr_kind::Constant: case expr_kind::Sort: case expr_kind::Macro: return 0; case expr_kind::Meta: case expr_kind::Local: return get_free_var_range(mlocal_type(e)); case expr_kind::Lambda: case expr_kind::Pi: case expr_kind::App: case expr_kind::Let: return static_cast(e.raw())->m_free_var_range; } lean_unreachable(); // LCOV_EXCL_LINE } bool operator==(expr const & a, expr const & b) { return expr_eq_fn()(a, b); } expr update_app(expr const & e, expr const & new_fn, expr const & new_arg) { if (!is_eqp(app_fn(e), new_fn) || !is_eqp(app_arg(e), new_arg)) return mk_app(new_fn, new_arg); else return e; } expr update_rev_app(expr const & e, unsigned num, expr const * new_args) { expr const * it = &e; for (unsigned i = 0; i < num - 1; i++) { if (!is_app(*it) || !is_eqp(app_arg(*it), new_args[i])) return mk_rev_app(num, new_args); it = &app_fn(*it); } if (!is_eqp(*it, new_args[num - 1])) return mk_rev_app(num, new_args); return e; } expr update_binder(expr const & e, expr const & new_domain, expr const & new_body) { if (!is_eqp(binder_domain(e), new_domain) || !is_eqp(binder_body(e), new_body)) return mk_binder(e.kind(), binder_name(e), new_domain, new_body); else return e; } expr update_let(expr const & e, expr const & new_type, expr const & new_val, expr const & new_body) { if (!is_eqp(let_type(e), new_type) || !is_eqp(let_value(e), new_val) || !is_eqp(let_body(e), new_body)) return mk_let(let_name(e), new_type, new_val, new_body); else return e; } expr update_mlocal(expr const & e, expr const & new_type) { if (!is_eqp(mlocal_type(e), new_type)) return mk_mlocal(is_metavar(e), mlocal_name(e), new_type); else return e; } expr update_sort(expr const & e, level const & new_level) { if (!is_eqp(sort_level(e), new_level)) return mk_sort(new_level); else return e; } expr update_constant(expr const & e, levels const & new_levels) { if (!is_eqp(const_level_params(e), new_levels)) return mk_constant(const_name(e), new_levels); else return e; } bool is_atomic(expr const & e) { switch (e.kind()) { case expr_kind::Constant: case expr_kind::Sort: case expr_kind::Macro: case expr_kind::Var: return true; case expr_kind::App: case expr_kind::Let: case expr_kind::Meta: case expr_kind::Local: case expr_kind::Lambda: case expr_kind::Pi: return false; } lean_unreachable(); // LCOV_EXCL_LINE } bool is_arrow(expr const & t) { optional r = t.raw()->is_arrow(); if (r) { return *r; } else { bool res = is_pi(t) && !has_free_var(binder_body(t), 0); t.raw()->set_is_arrow(res); return res; } } expr copy(expr const & a) { switch (a.kind()) { case expr_kind::Var: return mk_var(var_idx(a)); case expr_kind::Constant: return mk_constant(const_name(a), const_level_params(a)); case expr_kind::Sort: return mk_sort(sort_level(a)); case expr_kind::Macro: return mk_macro(static_cast(a.raw())->m_macro); case expr_kind::App: return mk_app(app_fn(a), app_arg(a)); case expr_kind::Lambda: return mk_lambda(binder_name(a), binder_domain(a), binder_body(a)); case expr_kind::Pi: return mk_pi(binder_name(a), binder_domain(a), binder_body(a)); case expr_kind::Let: return mk_let(let_name(a), let_type(a), let_value(a), let_body(a)); case expr_kind::Meta: return mk_metavar(mlocal_name(a), mlocal_type(a)); case expr_kind::Local: return mk_local(mlocal_name(a), mlocal_type(a)); } lean_unreachable(); // LCOV_EXCL_LINE } class expr_serializer : public object_serializer { typedef object_serializer super; max_sharing_fn m_max_sharing_fn; void write_core(expr const & a) { auto k = a.kind(); super::write_core(a, static_cast(k), [&]() { serializer & s = get_owner(); switch (k) { case expr_kind::Var: s << var_idx(a); break; case expr_kind::Constant: s << const_name(a) << const_level_params(a); break; case expr_kind::Sort: s << sort_level(a); break; case expr_kind::Macro: to_macro(a).write(s); break; case expr_kind::App: write_core(app_fn(a)); write_core(app_arg(a)); break; case expr_kind::Lambda: case expr_kind::Pi: s << binder_name(a); write_core(binder_domain(a)); write_core(binder_body(a)); break; case expr_kind::Let: s << let_name(a); write_core(let_type(a)); write_core(let_value(a)); write_core(let_body(a)); break; case expr_kind::Meta: case expr_kind::Local: s << mlocal_name(a); write_core(mlocal_type(a)); break; } }); } public: void write(expr const & a) { write_core(m_max_sharing_fn(a)); } }; class expr_deserializer : public object_deserializer { typedef object_deserializer super; public: expr read_binder(expr_kind k) { deserializer & d = get_owner(); name n = read_name(d); expr t = read(); return mk_binder(k, n, t, read()); } expr read() { return super::read_core([&](char c) { deserializer & d = get_owner(); auto k = static_cast(c); switch (k) { case expr_kind::Var: return mk_var(d.read_unsigned()); case expr_kind::Constant: { auto n = read_name(d); return mk_constant(n, read_levels(d)); } case expr_kind::Sort: return mk_sort(read_level(d)); break; case expr_kind::Macro: return read_macro(d); case expr_kind::App: { expr f = read(); return mk_app(f, read()); } case expr_kind::Lambda: case expr_kind::Pi: return read_binder(k); case expr_kind::Let: { name n = read_name(d); expr t = read(); expr v = read(); return mk_let(n, t, v, read()); } case expr_kind::Meta: { name n = read_name(d); return mk_metavar(n, read()); } case expr_kind::Local: { name n = read_name(d); return mk_local(n, read()); }} throw_corrupted_file(); // LCOV_EXCL_LINE }); } }; struct expr_sd { unsigned m_s_extid; unsigned m_d_extid; expr_sd() { m_s_extid = serializer::register_extension([](){ return std::unique_ptr(new expr_serializer()); }); m_d_extid = deserializer::register_extension([](){ return std::unique_ptr(new expr_deserializer()); }); } }; static expr_sd g_expr_sd; serializer & operator<<(serializer & s, expr const & n) { s.get_extension(g_expr_sd.m_s_extid).write(n); return s; } expr read_expr(deserializer & d) { return d.get_extension(g_expr_sd.m_d_extid).read(); } }