-- Copyright (c) 2014 Jakob von Raumer. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Jakob von Raumer -- Ported from Coq HoTT import init.trunc open eq prod truncation structure is_pointed [class] (A : Type) := (point : A) namespace is_pointed variables {A B : Type} (f : A → B) -- Any contractible type is pointed protected definition contr [instance] [H : is_contr A] : is_pointed A := is_pointed.mk (center A) -- A pi type with a pointed target is pointed protected definition pi [instance] {P : A → Type} [H : Πx, is_pointed (P x)] : is_pointed (Πx, P x) := is_pointed.mk (λx, point (P x)) -- A sigma type of pointed components is pointed protected definition sigma [instance] {P : A → Type} [G : is_pointed A] [H : is_pointed (P (point A))] : is_pointed (Σx, P x) := is_pointed.mk (sigma.dpair (point A) (point (P (point A)))) protected definition prod [H1 : is_pointed A] [H2 : is_pointed B] : is_pointed (A × B) := is_pointed.mk (prod.mk (point A) (point B)) protected definition loop_space (a : A) : is_pointed (a = a) := is_pointed.mk idp end is_pointed