import data.nat open - [rrs] nat definition Sum : nat → (nat → nat) → nat := sorry notation `Σ` binders ` < ` n `, ` r:(scoped f, Sum n f) := r lemma Sum_const [simp] (n : nat) (c : nat) : (Σ x < n, c) = n * c := sorry lemma Sum_add [simp] (f g : nat → nat) (n : nat) : (Σ x < n, f x + g x) = (Σ x < n, f x) + (Σ x < n, g x) := sorry attribute add.assoc add.comm add.left_comm mul_one add_zero zero_add one_mul mul.comm mul.assoc mul.left_comm [simp] example (f : nat → nat) (n : nat) : (Σ x < n, f x + 1) = (Σ x < n, f x) + n := by simp example (f g h : nat → nat) (n : nat) : (Σ x < n, f x + g x + h x) = (Σ x < n, h x) + (Σ x < n, f x) + (Σ x < n, g x) := by simp example (f g h : nat → nat) (n : nat) : (Σ x < n, f x + g x + h x) = Sum n h + (Σ x < n, f x) + (Σ x < n, g x) := by simp example (f g h : nat → nat) (n : nat) : (Σ x < n, f x + g x + h x + 0) = Sum n h + (Σ x < n, f x) + (Σ x < n, g x) := by simp example (f g h : nat → nat) (n : nat) : (Σ x < n, f x + g x + h x + 2) = 0 + Sum n h + (Σ x < n, f x) + (Σ x < n, g x) + 2 * n := by simp