-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Leonardo de Moura, Jeremy Avigad import logic.connectives.eq logic.connectives.quantifiers import logic.classes.inhabited logic.classes.nonempty import data.subtype data.sum using subtype inhabited nonempty -- logic.axioms.hilbert -- ==================== -- Follows Coq.Logic.ClassicalEpsilon (but our definition of "inhabited" is the -- constructive one). axiom strong_indefinite_description {A : Type} (P : A → Prop) (H : nonempty A) : {x : A | (∃x : A, P x) → P x} -- In the presence of classical logic, we could prove this from the weaker -- axiom indefinite_description {A : Type} {P : A->Prop} (H : ∃x, P x) : { x : A | P x } theorem nonempty_imp_exists_true {A : Type} (H : nonempty A) : ∃x : A, true := nonempty_elim H (take x, exists_intro x trivial) theorem nonempty_imp_inhabited {A : Type} (H : nonempty A) : inhabited A := let u : {x : A | (∃x : A, true) → true} := strong_indefinite_description (λa, true) H in inhabited_mk (elt_of u) theorem exists_imp_inhabited {A : Type} {P : A → Prop} (H : ∃x, P x) : inhabited A := nonempty_imp_inhabited (obtain w Hw, from H, nonempty_intro w) -- the Hilbert epsilon function -- ---------------------------- definition epsilon {A : Type} {H : nonempty A} (P : A → Prop) : A := let u : {x : A | (∃y, P y) → P x} := strong_indefinite_description P H in elt_of u theorem epsilon_spec_aux {A : Type} (H : nonempty A) (P : A → Prop) (Hex : ∃y, P y) : P (@epsilon A H P) := let u : {x : A | (∃y, P y) → P x} := strong_indefinite_description P H in has_property u Hex theorem epsilon_spec {A : Type} {P : A → Prop} (Hex : ∃y, P y) : P (@epsilon A (exists_imp_nonempty Hex) P) := epsilon_spec_aux (exists_imp_nonempty Hex) P Hex theorem epsilon_singleton {A : Type} (a : A) : @epsilon A (nonempty_intro a) (λx, x = a) = a := epsilon_spec (exists_intro a (refl a)) -- the axiom of choice -- ------------------- theorem axiom_of_choice {A : Type} {B : A → Type} {R : Πx, B x → Prop} (H : ∀x, ∃y, R x y) : ∃f, ∀x, R x (f x) := let f := λx, @epsilon _ (exists_imp_nonempty (H x)) (λy, R x y), H := take x, epsilon_spec (H x) in exists_intro f H theorem skolem {A : Type} {B : A → Type} {P : Πx, B x → Prop} : (∀x, ∃y, P x y) ↔ ∃f, (∀x, P x (f x)) := iff_intro (assume H : (∀x, ∃y, P x y), axiom_of_choice H) (assume H : (∃f, (∀x, P x (f x))), take x, obtain (fw : ∀x, B x) (Hw : ∀x, P x (fw x)), from H, exists_intro (fw x) (Hw x))