/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura Complete lattices TODO: define dual complete lattice and simplify proof of dual theorems. -/ import algebra.lattice data.set open set namespace algebra variable {A : Type} structure complete_lattice [class] (A : Type) extends weak_order A := (Inf : set A → A) (Inf_le : ∀ {a : A} {s : set A}, a ∈ s → le (Inf s) a) (le_Inf : ∀ {b : A} {s : set A}, (∀ (a : A), a ∈ s → le b a) → le b (Inf s)) namespace complete_lattice variable [C : complete_lattice A] include C definition Sup (s : set A) : A := Inf {b | ∀ a, a ∈ s → a ≤ b} prefix `⨅`:70 := Inf prefix `⨆`:65 := Sup lemma le_Sup {a : A} {s : set A} : a ∈ s → a ≤ ⨆ s := suppose a ∈ s, le_Inf (show ∀ (b : A), (∀ (a : A), a ∈ s → a ≤ b) → a ≤ b, from take b, assume h, h a `a ∈ s`) lemma Sup_le {b : A} {s : set A} (h : ∀ (a : A), a ∈ s → a ≤ b) : ⨆ s ≤ b := Inf_le h definition inf (a b : A) := ⨅ '{a, b} definition sup (a b : A) := ⨆ '{a, b} infix `⊓` := inf infix `⊔` := sup lemma inf_le_left (a b : A) : a ⊓ b ≤ a := Inf_le !mem_insert lemma inf_le_right (a b : A) : a ⊓ b ≤ b := Inf_le (!mem_insert_of_mem !mem_insert) lemma le_inf {a b c : A} : c ≤ a → c ≤ b → c ≤ a ⊓ b := assume h₁ h₂, le_Inf (take x, suppose x ∈ '{a, b}, or.elim (eq_or_mem_of_mem_insert this) (suppose x = a, by subst x; assumption) (suppose x ∈ '{b}, assert x = b, from !eq_of_mem_singleton this, by subst x; assumption)) lemma le_sup_left (a b : A) : a ≤ a ⊔ b := le_Sup !mem_insert lemma le_sup_right (a b : A) : b ≤ a ⊔ b := le_Sup (!mem_insert_of_mem !mem_insert) lemma sup_le {a b c : A} : a ≤ c → b ≤ c → a ⊔ b ≤ c := assume h₁ h₂, Sup_le (take x, suppose x ∈ '{a, b}, or.elim (eq_or_mem_of_mem_insert this) (suppose x = a, by subst x; assumption) (suppose x ∈ '{b}, assert x = b, from !eq_of_mem_singleton this, by subst x; assumption)) definition complete_lattice_is_lattice [instance] : lattice A := ⦃ lattice, C, inf := inf, sup := sup, inf_le_left := inf_le_left, inf_le_right := inf_le_right, le_inf := @le_inf A C, le_sup_left := le_sup_left, le_sup_right := le_sup_right, sup_le := @sup_le A C ⦄ variable {f : A → A} premise (mono : ∀ x y : A, x ≤ y → f x ≤ f y) theorem knaster_tarski : ∃ a, f a = a ∧ ∀ b, f b = b → a ≤ b := let a := ⨅ {u | f u ≤ u} in have h₁ : f a = a, from have ge : f a ≤ a, from have ∀ b, b ∈ {u | f u ≤ u} → f a ≤ b, from take b, suppose f b ≤ b, have a ≤ b, from Inf_le this, have f a ≤ f b, from !mono this, le.trans `f a ≤ f b` `f b ≤ b`, le_Inf this, have le : a ≤ f a, from have f (f a) ≤ f a, from !mono ge, have f a ∈ {u | f u ≤ u}, from this, Inf_le this, le.antisymm ge le, have h₂ : ∀ b, f b = b → a ≤ b, from take b, suppose f b = b, have b ∈ {u | f u ≤ u}, from show f b ≤ b, by rewrite this; apply le.refl, Inf_le this, exists.intro a (and.intro h₁ h₂) theorem knaster_tarski_dual : ∃ a, f a = a ∧ ∀ b, f b = b → b ≤ a := let a := ⨆ {u | u ≤ f u} in have h₁ : f a = a, from have le : a ≤ f a, from have ∀ b, b ∈ {u | u ≤ f u} → b ≤ f a, from take b, suppose b ≤ f b, have b ≤ a, from le_Sup this, have f b ≤ f a, from !mono this, le.trans `b ≤ f b` `f b ≤ f a`, Sup_le this, have ge : f a ≤ a, from have f a ≤ f (f a), from !mono le, have f a ∈ {u | u ≤ f u}, from this, le_Sup this, le.antisymm ge le, have h₂ : ∀ b, f b = b → b ≤ a, from take b, suppose f b = b, have b ≤ f b, by rewrite this; apply le.refl, le_Sup this, exists.intro a (and.intro h₁ h₂) definition bot : A := ⨅ univ definition top : A := ⨆ univ notation `⊥` := bot notation `⊤` := top lemma bot_le (a : A) : ⊥ ≤ a := Inf_le !mem_univ lemma eq_bot {a : A} : (∀ b, a ≤ b) → a = ⊥ := assume h, have a ≤ ⊥, from le_Inf (take b bin, h b), le.antisymm this !bot_le lemma le_top (a : A) : a ≤ ⊤ := le_Sup !mem_univ lemma eq_top {a : A} : (∀ b, b ≤ a) → a = ⊤ := assume h, have ⊤ ≤ a, from Sup_le (take b bin, h b), le.antisymm !le_top this lemma Inf_singleton {a : A} : ⨅'{a} = a := have ⨅'{a} ≤ a, from Inf_le !mem_insert, have a ≤ ⨅'{a}, from le_Inf (take b, suppose b ∈ '{a}, assert b = a, from eq_of_mem_singleton this, by rewrite this; apply le.refl), le.antisymm `⨅'{a} ≤ a` `a ≤ ⨅'{a}` lemma Sup_singleton {a : A} : ⨆'{a} = a := have ⨆'{a} ≤ a, from Sup_le (take b, suppose b ∈ '{a}, assert b = a, from eq_of_mem_singleton this, by rewrite this; apply le.refl), have a ≤ ⨆'{a}, from le_Sup !mem_insert, le.antisymm `⨆'{a} ≤ a` `a ≤ ⨆'{a}` lemma Inf_antimono {s₁ s₂ : set A} : s₁ ⊆ s₂ → ⨅ s₂ ≤ ⨅ s₁ := suppose s₁ ⊆ s₂, le_Inf (take a : A, suppose a ∈ s₁, Inf_le (mem_of_subset_of_mem `s₁ ⊆ s₂` `a ∈ s₁`)) lemma Sup_mono {s₁ s₂ : set A} : s₁ ⊆ s₂ → ⨆ s₁ ≤ ⨆ s₂ := suppose s₁ ⊆ s₂, Sup_le (take a : A, suppose a ∈ s₁, le_Sup (mem_of_subset_of_mem `s₁ ⊆ s₂` `a ∈ s₁`)) lemma Inf_union (s₁ s₂ : set A) : ⨅ (s₁ ∪ s₂) = (⨅s₁) ⊓ (⨅s₂) := have le₁ : ⨅ (s₁ ∪ s₂) ≤ (⨅s₁) ⊓ (⨅s₂), from le_inf (le_Inf (take a : A, suppose a ∈ s₁, Inf_le (mem_union_of_mem_left _ `a ∈ s₁`))) (le_Inf (take a : A, suppose a ∈ s₂, Inf_le (mem_union_of_mem_right _ `a ∈ s₂`))), have le₂ : (⨅s₁) ⊓ (⨅s₂) ≤ ⨅ (s₁ ∪ s₂), from le_Inf (take a : A, suppose a ∈ s₁ ∪ s₂, or.elim this (suppose a ∈ s₁, have (⨅s₁) ⊓ (⨅s₂) ≤ ⨅s₁, from !inf_le_left, have ⨅s₁ ≤ a, from Inf_le `a ∈ s₁`, le.trans `(⨅s₁) ⊓ (⨅s₂) ≤ ⨅s₁` `⨅s₁ ≤ a`) (suppose a ∈ s₂, have (⨅s₁) ⊓ (⨅s₂) ≤ ⨅s₂, from !inf_le_right, have ⨅s₂ ≤ a, from Inf_le `a ∈ s₂`, le.trans `(⨅s₁) ⊓ (⨅s₂) ≤ ⨅s₂` `⨅s₂ ≤ a`)), le.antisymm le₁ le₂ lemma Sup_union (s₁ s₂ : set A) : ⨆ (s₁ ∪ s₂) = (⨆s₁) ⊔ (⨆s₂) := have le₁ : ⨆ (s₁ ∪ s₂) ≤ (⨆s₁) ⊔ (⨆s₂), from Sup_le (take a : A, suppose a ∈ s₁ ∪ s₂, or.elim this (suppose a ∈ s₁, have a ≤ ⨆s₁, from le_Sup `a ∈ s₁`, have ⨆s₁ ≤ (⨆s₁) ⊔ (⨆s₂), from !le_sup_left, le.trans `a ≤ ⨆s₁` `⨆s₁ ≤ (⨆s₁) ⊔ (⨆s₂)`) (suppose a ∈ s₂, have a ≤ ⨆s₂, from le_Sup `a ∈ s₂`, have ⨆s₂ ≤ (⨆s₁) ⊔ (⨆s₂), from !le_sup_right, le.trans `a ≤ ⨆s₂` `⨆s₂ ≤ (⨆s₁) ⊔ (⨆s₂)`)), have le₂ : (⨆s₁) ⊔ (⨆s₂) ≤ ⨆ (s₁ ∪ s₂), from sup_le (Sup_le (take a : A, suppose a ∈ s₁, le_Sup (mem_union_of_mem_left _ `a ∈ s₁`))) (Sup_le (take a : A, suppose a ∈ s₂, le_Sup (mem_union_of_mem_right _ `a ∈ s₂`))), le.antisymm le₁ le₂ lemma Inf_empty_eq_Sup_univ : ⨅ (∅ : set A) = ⨆ univ := have le₁ : ⨅ ∅ ≤ ⨆ univ, from le_Sup !mem_univ, have le₂ : ⨆ univ ≤ ⨅ ∅, from le_Inf (take a, suppose a ∈ ∅, absurd this !not_mem_empty), le.antisymm le₁ le₂ lemma Sup_empty_eq_Inf_univ : ⨆ (∅ : set A) = ⨅ univ := have le₁ : ⨆ (∅ : set A) ≤ ⨅ univ, from Sup_le (take a, suppose a ∈ ∅, absurd this !not_mem_empty), have le₂ : ⨅ univ ≤ ⨆ (∅ : set A), from Inf_le !mem_univ, le.antisymm le₁ le₂ end complete_lattice end algebra