Prop:Type theorem:definition by simp;by exact sorry true:unit trivial:star is_true:is_unit false:empty is_false:is_empty induction:rec induction_on:rec_on ∨;⊎ or.elim:sum.rec_on or.inl:sum.inl or.inr:sum.inr or.intro_left _;sum.inl or.intro_right _;sum.inr or_resolve_right:sum_resolve_right or_resolve_left:sum_resolve_left or.swap:sum.swap or.rec_on:sum.rec_on or_of_or_of_imp_of_imp:sum_of_sum_of_imp_of_imp or_of_or_of_imp_left:sum_of_sum_of_imp_left or_of_or_of_imp_right:sum_of_sum_of_imp_right ∧;× and.intro:pair and.left: and.elim_left:prod.pr1 and.left:prod.pr1 and.elim_right:prod.pr2 and.right:prod.pr2 ∀;Π ∃;Σ exists.intro:sigma.mk exists.elim:sigma.rec_on eq.symm:inverse congr_arg:ap