/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.fundamental_group Authors: Floris van Doorn fundamental group of a pointed space -/ import hit.trunc algebra.group types.pointed open core eq trunc algebra is_trunc pointed namespace fundamental_group section parameters {A : Type} (a : A) definition carrier [reducible] : Type := trunc 0 (a = a) local abbreviation G := carrier definition mul (g h : G) : G := begin apply trunc.rec_on g, intro p, apply trunc.rec_on h, intro q, exact tr (p ⬝ q) end definition inv (g : G) : G := begin apply trunc.rec_on g, intro p, exact tr p⁻¹ end definition one : G := tr idp local notation 1 := one local postfix ⁻¹ := inv local infix * := mul definition mul_assoc (g₁ g₂ g₃ : G) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) := begin apply trunc.rec_on g₁, intro p₁, apply trunc.rec_on g₂, intro p₂, apply trunc.rec_on g₃, intro p₃, exact ap tr !con.assoc, end definition one_mul (g : G) : 1 * g = g := begin apply trunc.rec_on g, intro p, exact ap tr !idp_con, end definition mul_one (g : G) : g * 1 = g := begin apply trunc.rec_on g, intro p, exact idp, end definition mul_left_inv (g : G) : g⁻¹ * g = 1 := begin apply trunc.rec_on g, intro p, apply ap tr !con.left_inv end definition group : group G := ⦃group, mul := mul, mul_assoc := mul_assoc, one := one, one_mul := one_mul, mul_one := mul_one, inv := inv, mul_left_inv := mul_left_inv, is_hset_carrier := _⦄ end end fundamental_group attribute fundamental_group.group [instance] [constructor] [priority 800] definition fundamental_group [constructor] (A : Type) [H : pointed A]: Group := Group.mk (fundamental_group.carrier (point A)) _ namespace core prefix `π₁`:95 := fundamental_group end core