/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Some finite categories which are neither discrete nor indiscrete -/ import ..functor types.sum open bool unit is_trunc sum eq functor equiv namespace category variables {A : Type} (R : A → A → Type) (H : Π⦃a b c⦄, R a b → R b c → empty) [HR : Πa b, is_hset (R a b)] [HA : is_trunc 1 A] include H HR HA -- we call a category sparse if you cannot compose two morphism, except the ones which come from equality definition sparse_category' [constructor] : precategory A := precategory.mk (λa b, R a b ⊎ a = b) begin intros a b c g f, induction g with rg pg: induction f with rf pf, { exfalso, exact H rf rg}, { exact inl (pf⁻¹ ▸ rg)}, { exact inl (pg ▸ rf)}, { exact inr (pf ⬝ pg)}, end (λa, inr idp) abstract begin intros a b c d h g f, induction h with rh ph: induction g with rg pg: induction f with rf pf: esimp: try induction pf; try induction pg; try induction ph: esimp; try (exfalso; apply H;assumption;assumption) end end abstract by intros a b f; induction f with rf pf: reflexivity end abstract by intros a b f; (induction f with rf pf: esimp); rewrite idp_con end definition sparse_category [constructor] : Precategory := precategory.Mk (sparse_category' R @H) definition sparse_category_functor [constructor] (C : Precategory) (f : A → C) (g : Π{a b} (r : R a b), f a ⟶ f b) : sparse_category R H ⇒ C := functor.mk f (λa b, sum.rec g (eq.rec id)) (λa, idp) abstract begin intro a b c g f, induction g with rg pg: induction f with rf pf: esimp: try induction pg: try induction pf: esimp, exfalso, exact H rf rg, exact !id_right⁻¹, exact !id_left⁻¹, exact !id_id⁻¹ end end omit H HR HA section equalizer inductive equalizer_category_hom : bool → bool → Type := | f1 : equalizer_category_hom ff tt | f2 : equalizer_category_hom ff tt open equalizer_category_hom theorem is_hset_equalizer_category_hom (b₁ b₂ : bool) : is_hset (equalizer_category_hom b₁ b₂) := begin assert H : Πb b', equalizer_category_hom b b' ≃ bool.rec (bool.rec empty bool) (λb, empty) b b', { intro b b', fapply equiv.MK, { intro x, induction x, exact ff, exact tt}, { intro v, induction b: induction b': induction v, exact f1, exact f2}, { intro v, induction b: induction b': induction v: reflexivity}, { intro x, induction x: reflexivity}}, apply is_trunc_equiv_closed_rev, apply H, induction b₁: induction b₂: exact _ end local attribute is_hset_equalizer_category_hom [instance] definition equalizer_category [constructor] : Precategory := sparse_category equalizer_category_hom begin intro a b c g f; cases g: cases f end definition equalizer_category_functor [constructor] (C : Precategory) {x y : C} (f g : x ⟶ y) : equalizer_category ⇒ C := sparse_category_functor _ _ C (bool.rec x y) begin intro a b h; induction h, exact f, exact g end end equalizer section pullback inductive pullback_category_ob : Type := | TR : pullback_category_ob | BL : pullback_category_ob | BR : pullback_category_ob theorem pullback_category_ob_decidable_equality : decidable_eq pullback_category_ob := begin intro x y; induction x: induction y: try exact decidable.inl idp: apply decidable.inr; contradiction end open pullback_category_ob inductive pullback_category_hom : pullback_category_ob → pullback_category_ob → Type := | f1 : pullback_category_hom TR BR | f2 : pullback_category_hom BL BR open pullback_category_hom theorem is_hset_pullback_category_hom (b₁ b₂ : pullback_category_ob) : is_hset (pullback_category_hom b₁ b₂) := begin assert H : Πb b', pullback_category_hom b b' ≃ pullback_category_ob.rec (λb, empty) (λb, empty) (pullback_category_ob.rec unit unit empty) b' b, { intro b b', fapply equiv.MK, { intro x, induction x: exact star}, { intro v, induction b: induction b': induction v, exact f1, exact f2}, { intro v, induction b: induction b': induction v: reflexivity}, { intro x, induction x: reflexivity}}, apply is_trunc_equiv_closed_rev, apply H, induction b₁: induction b₂: exact _ end local attribute is_hset_pullback_category_hom pullback_category_ob_decidable_equality [instance] definition pullback_category [constructor] : Precategory := sparse_category pullback_category_hom begin intro a b c g f; cases g: cases f end definition pullback_category_functor [constructor] (C : Precategory) {x y z : C} (f : x ⟶ z) (g : y ⟶ z) : pullback_category ⇒ C := sparse_category_functor _ _ C (pullback_category_ob.rec x y z) begin intro a b h; induction h, exact f, exact g end end pullback end category