/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Jakob von Raumer Category of hsets -/ import ..category types.equiv ..functor types.lift ..limits ..colimits hit.set_quotient hit.trunc open eq category equiv iso is_equiv is_trunc function sigma set_quotient trunc namespace category definition precategory_hset.{u} [reducible] [constructor] : precategory hset.{u} := precategory.mk (λx y : hset, x → y) (λx y z g f a, g (f a)) (λx a, a) (λx y z w h g f, eq_of_homotopy (λa, idp)) (λx y f, eq_of_homotopy (λa, idp)) (λx y f, eq_of_homotopy (λa, idp)) definition Precategory_hset [reducible] [constructor] : Precategory := Precategory.mk hset precategory_hset abbreviation set [constructor] := Precategory_hset namespace set local attribute is_equiv_subtype_eq [instance] definition iso_of_equiv [constructor] {A B : set} (f : A ≃ B) : A ≅ B := iso.MK (to_fun f) (to_inv f) (eq_of_homotopy (left_inv (to_fun f))) (eq_of_homotopy (right_inv (to_fun f))) definition equiv_of_iso [constructor] {A B : set} (f : A ≅ B) : A ≃ B := begin apply equiv.MK (to_hom f) (iso.to_inv f), exact ap10 (to_right_inverse f), exact ap10 (to_left_inverse f) end definition is_equiv_iso_of_equiv [constructor] (A B : set) : is_equiv (@iso_of_equiv A B) := adjointify _ (λf, equiv_of_iso f) (λf, proof iso_eq idp qed) (λf, equiv_eq idp) local attribute is_equiv_iso_of_equiv [instance] definition iso_of_eq_eq_compose (A B : hset) : @iso_of_eq _ _ A B = @iso_of_equiv A B ∘ @equiv_of_eq A B ∘ subtype_eq_inv _ _ ∘ @ap _ _ (to_fun (trunctype.sigma_char 0)) A B := eq_of_homotopy (λp, eq.rec_on p idp) definition equiv_equiv_iso (A B : set) : (A ≃ B) ≃ (A ≅ B) := equiv.MK (λf, iso_of_equiv f) (λf, proof equiv.MK (to_hom f) (iso.to_inv f) (ap10 (to_right_inverse f)) (ap10 (to_left_inverse f)) qed) (λf, proof iso_eq idp qed) (λf, proof equiv_eq idp qed) definition equiv_eq_iso (A B : set) : (A ≃ B) = (A ≅ B) := ua !equiv_equiv_iso definition is_univalent_hset (A B : set) : is_equiv (iso_of_eq : A = B → A ≅ B) := assert H₁ : is_equiv (@iso_of_equiv A B ∘ @equiv_of_eq A B ∘ subtype_eq_inv _ _ ∘ @ap _ _ (to_fun (trunctype.sigma_char 0)) A B), from @is_equiv_compose _ _ _ _ _ (@is_equiv_compose _ _ _ _ _ (@is_equiv_compose _ _ _ _ _ _ (@is_equiv_subtype_eq_inv _ _ _ _ _)) !univalence) !is_equiv_iso_of_equiv, let H₂ := (iso_of_eq_eq_compose A B)⁻¹ in begin rewrite H₂ at H₁, assumption end end set definition category_hset [instance] [constructor] [reducible] : category hset := category.mk precategory_hset set.is_univalent_hset definition Category_hset [reducible] [constructor] : Category := Category.mk hset category_hset abbreviation cset [constructor] := Category_hset open functor lift definition lift_functor.{u v} [constructor] : set.{u} ⇒ set.{max u v} := functor.mk tlift (λa b, lift_functor) (λa, eq_of_homotopy (λx, by induction x; reflexivity)) (λa b c g f, eq_of_homotopy (λx, by induction x; reflexivity)) open pi sigma.ops local attribute Category.to.precategory [unfold 1] local attribute category.to_precategory [unfold 2] definition is_complete_set_cone.{u v w} [constructor] (I : Precategory.{v w}) (F : I ⇒ set.{max u v w}) : cone_obj F := begin fapply cone_obj.mk, { fapply trunctype.mk, { exact Σ(s : Π(i : I), trunctype.carrier (F i)), Π{i j : I} (f : i ⟶ j), F f (s i) = (s j)}, { with_options [elaborator.ignore_instances true] -- TODO: fix ( refine is_trunc_sigma _ _; ( apply is_trunc_pi); ( intro s; refine is_trunc_pi _ _; intro i; refine is_trunc_pi _ _; intro j; refine is_trunc_pi _ _; intro f; apply is_trunc_eq))}}, { fapply nat_trans.mk, { intro i x, esimp at x, exact x.1 i}, { intro i j f, esimp, apply eq_of_homotopy, intro x, esimp at x, induction x with s p, esimp, apply p}} end definition is_complete_set.{u v w} [instance] : is_complete.{(max u v w)+1 (max u v w) v w} set := begin intro I F, fapply has_terminal_object.mk, { exact is_complete_set_cone.{u v w} I F}, { intro c, esimp at *, induction c with X η, induction η with η p, esimp at *, fapply is_contr.mk, { fapply cone_hom.mk, { intro x, esimp at *, fapply sigma.mk, { intro i, exact η i x}, { intro i j f, exact ap10 (p f) x}}, { intro i, reflexivity}}, { esimp, intro h, induction h with f q, apply cone_hom_eq, esimp at *, apply eq_of_homotopy, intro x, fapply sigma_eq: esimp, { apply eq_of_homotopy, intro i, exact (ap10 (q i) x)⁻¹}, { with_options [elaborator.ignore_instances true] -- TODO: fix ( refine is_hprop.elimo _ _ _; refine is_trunc_pi _ _; intro i; refine is_trunc_pi _ _; intro j; refine is_trunc_pi _ _; intro f; apply is_trunc_eq)}}} end definition is_cocomplete_set_cone_rel.{u v w} [unfold 3 4] (I : Precategory.{v w}) (F : I ⇒ set.{max u v w}ᵒᵖ) : (Σ(i : I), trunctype.carrier (F i)) → (Σ(i : I), trunctype.carrier (F i)) → hprop.{max u v w} := begin intro v w, induction v with i x, induction w with j y, fapply trunctype.mk, { exact ∃(f : i ⟶ j), to_fun_hom F f y = x}, { exact _} end definition is_cocomplete_set_cone.{u v w} [constructor] (I : Precategory.{v w}) (F : I ⇒ set.{max u v w}ᵒᵖ) : cone_obj F := begin fapply cone_obj.mk, { fapply trunctype.mk, { apply set_quotient (is_cocomplete_set_cone_rel.{u v w} I F)}, { apply is_hset_set_quotient}}, { fapply nat_trans.mk, { intro i x, esimp, apply class_of, exact ⟨i, x⟩}, { intro i j f, esimp, apply eq_of_homotopy, intro y, apply eq_of_rel, esimp, exact exists.intro f idp}} end -- giving the following step explicitly slightly reduces the elaboration time of the next proof -- definition is_cocomplete_set_cone_hom.{u v w} [constructor] -- (I : Precategory.{v w}) (F : I ⇒ Opposite set.{max u v w}) -- (X : hset.{max u v w}) -- (η : Π (i : carrier I), trunctype.carrier (to_fun_ob F i) → trunctype.carrier X) -- (p : Π {i j : carrier I} (f : hom i j), (λ (x : trunctype.carrier (to_fun_ob F j)), η i (to_fun_hom F f x)) = η j) -- : --cone_hom (cone_obj.mk X (nat_trans.mk η @p)) (is_cocomplete_set_cone.{u v w} I F) -- @cone_hom I setᵒᵖ F -- (@cone_obj.mk I setᵒᵖ F X -- (@nat_trans.mk I (Opposite set) (@constant_functor I (Opposite set) X) F η @p)) -- (is_cocomplete_set_cone.{u v w} I F) -- := -- begin -- fapply cone_hom.mk, -- { refine set_quotient.elim _ _, -- { intro v, induction v with i x, exact η i x}, -- { intro v w r, induction v with i x, induction w with j y, esimp at *, -- refine trunc.elim_on r _, clear r, -- intro u, induction u with f q, -- exact ap (η i) q⁻¹ ⬝ ap10 (p f) y}}, -- { intro i, reflexivity} -- end -- TODO: rewrite after induction tactic for trunc/set_quotient is implemented definition is_cocomplete_set.{u v w} [instance] : is_cocomplete.{(max u v w)+1 (max u v w) v w} set := begin intro I F, fapply has_terminal_object.mk, { exact is_cocomplete_set_cone.{u v w} I F}, { intro c, esimp at *, induction c with X η, induction η with η p, esimp at *, fapply is_contr.mk, { fapply cone_hom.mk, { refine set_quotient.elim _ _, { intro v, induction v with i x, exact η i x}, { intro v w r, induction v with i x, induction w with j y, esimp at *, refine trunc.elim_on r _, clear r, intro u, induction u with f q, exact ap (η i) q⁻¹ ⬝ ap10 (p f) y}}, { intro i, reflexivity}}, { esimp, intro h, induction h with f q, apply cone_hom_eq, esimp at *, apply eq_of_homotopy, refine set_quotient.rec _ _, { intro v, induction v with i x, esimp, exact (ap10 (q i) x)⁻¹}, { intro v w r, apply is_hprop.elimo}}}, end end category