/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Quotient of a reflexive relation -/ import homotopy.circle cubical.squareover .two_quotient open eq simple_two_quotient e_closure namespace refl_quotient section parameters {A : Type} (R : A → A → Type) (ρ : Πa, R a a) inductive refl_quotient_Q : Π⦃a : A⦄, e_closure R a a → Type := | Qmk {} : Π(a : A), refl_quotient_Q [ρ a] open refl_quotient_Q local abbreviation Q := refl_quotient_Q definition refl_quotient : Type := simple_two_quotient R Q -- TODO: define this in root namespace definition rclass_of (a : A) : refl_quotient := incl0 R Q a definition req_of_rel ⦃a a' : A⦄ (r : R a a') : rclass_of a = rclass_of a' := incl1 R Q r definition pρ (a : A) : req_of_rel (ρ a) = idp := incl2 R Q (Qmk a) -- protected definition rec {P : refl_quotient → Type} -- (Pc : Π(a : A), P (rclass_of a)) -- (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[req_of_rel H] Pc a') -- (Pr : Π(a : A), Pp (ρ a) =[pρ a] idpo) -- (x : refl_quotient) : P x := -- sorry -- protected definition rec_on [reducible] {P : refl_quotient → Type} -- (Pc : Π(a : A), P (rclass_of a)) -- (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[req_of_rel H] Pc a') -- (Pr : Π(a : A), Pp (ρ a) =[pρ a] idpo) : P y := -- rec Pinl Pinr Pglue y -- definition rec_req_of_rel {P : Type} {P : refl_quotient → Type} -- (Pc : Π(a : A), P (rclass_of a)) -- (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[req_of_rel H] Pc a') -- (Pr : Π(a : A), Pp (ρ a) =[pρ a] idpo) -- ⦃a a' : A⦄ (r : R a a') : apdo (rec Pc Pp Pr) (req_of_rel r) = Pp r := -- !rec_incl1 -- theorem rec_pρ {P : Type} {P : refl_quotient → Type} -- (Pc : Π(a : A), P (rclass_of a)) -- (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[req_of_rel H] Pc a') -- (Pr : Π(a : A), Pp (ρ a) =[pρ a] idpo) (a : A) -- : square (ap02 (rec Pc Pp Pr) (pρ a)) (Pr a) (elim_req_of_rel Pr (ρ a)) idp := -- !rec_incl2 protected definition elim {P : Type} (Pc : Π(a : A), P) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') (Pr : Π(a : A), Pp (ρ a) = idp) (x : refl_quotient) : P := begin induction x, exact Pc a, exact Pp s, induction q, apply Pr end protected definition elim_on [reducible] {P : Type} (x : refl_quotient) (Pc : Π(a : A), P) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') (Pr : Π(a : A), Pp (ρ a) = idp) : P := elim Pc Pp Pr x definition elim_req_of_rel {P : Type} {Pc : Π(a : A), P} {Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a'} (Pr : Π(a : A), Pp (ρ a) = idp) ⦃a a' : A⦄ (r : R a a') : ap (elim Pc Pp Pr) (req_of_rel r) = Pp r := !elim_incl1 theorem elim_pρ {P : Type} (Pc : Π(a : A), P) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') (Pr : Π(a : A), Pp (ρ a) = idp) (a : A) : square (ap02 (elim Pc Pp Pr) (pρ a)) (Pr a) (elim_req_of_rel Pr (ρ a)) idp := !elim_incl2 end end refl_quotient attribute refl_quotient.rclass_of [constructor] attribute /-refl_quotient.rec-/ refl_quotient.elim [unfold 8] [recursor 8] --attribute refl_quotient.elim_type [unfold 9] attribute /-refl_quotient.rec_on-/ refl_quotient.elim_on [unfold 5] --attribute refl_quotient.elim_type_on [unfold 6]