/- Copyright (c) 2015 Ulrik Buchholtz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Ulrik Buchholtz -/ import types.trunc types.arrow_2 types.fiber open eq is_trunc is_equiv nat equiv trunc function namespace homotopy definition is_conn [reducible] (n : trunc_index) (A : Type) : Type := is_contr (trunc n A) definition is_conn_map (n : trunc_index) {A B : Type} (f : A → B) : Type := Πb : B, is_conn n (fiber f b) definition is_conn_of_map_to_unit (n : trunc_index) (A : Type) : is_conn_map n (λx : A, unit.star) → is_conn n A := begin intro H, unfold is_conn_map at H, rewrite [-(ua (fiber.fiber_star_equiv A))], exact (H unit.star) end -- Lemma 7.5.2 definition minus_one_conn_of_surjective {A B : Type} (f : A → B) : is_surjective f → is_conn_map -1 f := begin intro H, intro b, exact @is_contr_of_inhabited_hprop (∥fiber f b∥) (is_trunc_trunc -1 (fiber f b)) (H b), end definition is_surjection_of_minus_one_conn {A B : Type} (f : A → B) : is_conn_map -1 f → is_surjective f := begin intro H, intro b, exact @center (∥fiber f b∥) (H b), end definition merely_of_minus_one_conn {A : Type} : is_conn -1 A → ∥A∥ := λH, @center (∥A∥) H definition minus_one_conn_of_merely {A : Type} : ∥A∥ → is_conn -1 A := @is_contr_of_inhabited_hprop (∥A∥) (is_trunc_trunc -1 A) section open arrow variables {f g : arrow} -- Lemma 7.5.4 definition retract_of_conn_is_conn [instance] (r : arrow_hom f g) [H : is_retraction r] (n : trunc_index) [K : is_conn_map n f] : is_conn_map n g := begin intro b, unfold is_conn, apply is_contr_retract (trunc_functor n (retraction_on_fiber r b)), exact K (on_cod (arrow.is_retraction.sect r) b) end end -- Corollary 7.5.5 definition is_conn_homotopy (n : trunc_index) {A B : Type} {f g : A → B} (p : f ~ g) (H : is_conn_map n f) : is_conn_map n g := @retract_of_conn_is_conn _ _ (arrow.arrow_hom_of_homotopy p) (arrow.is_retraction_arrow_hom_of_homotopy p) n H end homotopy