/- Copyright (c) 2015 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer Declaration of a join as a special case of a pushout -/ import hit.pushout .susp open eq prod equiv pushout is_trunc bool namespace join definition join (A B : Type) : Type := @pushout (A × B) A B pr1 pr2 definition jglue {A B : Type} (a : A) (b : B) := @glue (A × B) A B pr1 pr2 (a, b) protected definition is_contr (A B : Type) [HA : is_contr A] : is_contr (join A B) := begin fapply is_contr.mk, exact inl (center A), intro x, induction x with a b, apply ap inl, apply center_eq, apply jglue, induction x with a b, apply pathover_of_tr_eq, apply concat, apply transport_eq_Fr, esimp, rewrite ap_id, generalize center_eq a, intro p, cases p, apply idp_con, end protected definition bool (A : Type) : join bool A ≃ susp A := begin fapply equiv.MK, intro ba, induction ba with b a, induction b, exact susp.south, exact susp.north, exact susp.north, induction x with b a, esimp, induction b, apply inverse, apply susp.merid, exact a, reflexivity, intro s, induction s with m, exact inl tt, exact inl ff, exact (jglue tt m) ⬝ (jglue ff m)⁻¹, intros, induction b with m, do 2 reflexivity, esimp, apply eq_pathover, apply hconcat, apply hdeg_square, apply concat, apply ap_compose' (pushout.elim _ _ _), apply concat, apply ap (ap (pushout.elim _ _ _)), apply susp.elim_merid, apply ap_con, apply hconcat, apply vconcat, apply hdeg_square, apply elim_glue, apply hdeg_square, apply ap_inv, esimp, apply hconcat, apply hdeg_square, apply concat, apply idp_con, apply concat, apply ap inverse, apply pushout.elim_glue, apply inv_inv, apply hinverse, apply hdeg_square, apply ap_id, intro x, induction x with b a, induction b, do 2 reflexivity, esimp, apply jglue, induction x with b a, induction b, esimp, apply eq_pathover, rewrite ap_id, apply eq_hconcat, apply concat, apply ap_compose' (susp.elim _ _ _), apply concat, apply ap (ap _) !pushout.elim_glue, apply concat, apply ap_inv, apply concat, apply ap inverse !susp.elim_merid, apply concat, apply con_inv, apply ap (λ x, x ⬝ _) !inv_inv, apply square_of_eq_top, apply inverse, apply concat, apply ap (λ x, x ⬝ _) !con.assoc, rewrite [con.left_inv, con_idp], apply con.right_inv, esimp, apply eq_pathover, rewrite ap_id, apply eq_hconcat, apply concat, apply ap_compose' (susp.elim _ _ _), apply concat, apply ap (ap _) !elim_glue, esimp, reflexivity, apply square_of_eq_top, rewrite idp_con, apply !con.right_inv⁻¹, end end join