/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Declaration of the reduced suspension -/ import hit.two_quotient types.pointed algebra.e_closure open simple_two_quotient eq unit pointed e_closure namespace red_susp section parameter {A : Pointed} inductive red_susp_R : unit → unit → Type := | Rmk : Π(a : A), red_susp_R star star open red_susp_R inductive red_susp_Q : Π⦃x : unit⦄, e_closure red_susp_R x x → Type := | Qmk : red_susp_Q [Rmk pt] open red_susp_Q local abbreviation R := red_susp_R local abbreviation Q := red_susp_Q definition red_susp : Type := simple_two_quotient R Q -- TODO: define this in root namespace definition base : red_susp := incl0 R Q star definition merid (a : A) : base = base := incl1 R Q (Rmk a) definition merid_pt : merid pt = idp := incl2 R Q Qmk -- protected definition rec {P : red_susp → Type} (Pb : P base) (Pm : Π(a : A), Pb =[merid a] Pb) -- (Pe : Pm pt =[merid_pt] idpo) (x : red_susp) : P x := -- begin -- induction x, -- end -- protected definition rec_on [reducible] {P : red_susp → Type} (x : red_susp) (Pb : P base) -- (Pm : Π(a : A), Pb =[merid a] Pb) (Pe : Pm pt =[merid_pt] idpo) : P x := -- rec Pb Pm Pe x -- definition rec_merid {P : red_susp → Type} (Pb : P base) (Pm : Π(a : A), Pb =[merid a] Pb) -- (Pe : Pm pt =[merid_pt] idpo) (a : A) -- : apdo (rec Pb Pm Pe) (merid a) = Pm a := -- !rec_incl1 -- theorem elim_merid_pt {P : red_susp → Type} (Pb : P base) (Pm : Π(a : A), Pb =[merid a] Pb) -- (Pe : Pm pt =[merid_pt] idpo) -- : square (ap02 (rec Pb Pm Pe) merid_pt) Pe (rec_merid Pe pt) idp := -- !rec_incl2 protected definition elim {P : Type} (Pb : P) (Pm : Π(a : A), Pb = Pb) (Pe : Pm pt = idp) (x : red_susp) : P := begin induction x, exact Pb, induction s, exact Pm a, induction q, exact Pe end protected definition elim_on [reducible] {P : Type} (x : red_susp) (Pb : P) (Pm : Π(a : A), Pb = Pb) (Pe : Pm pt = idp) : P := elim Pb Pm Pe x definition elim_merid {P : Type} {Pb : P} {Pm : Π(a : A), Pb = Pb} (Pe : Pm pt = idp) (a : A) : ap (elim Pb Pm Pe) (merid a) = Pm a := !elim_incl1 theorem elim_merid_pt {P : Type} (Pb : P) (Pm : Π(a : A), Pb = Pb) (Pe : Pm pt = idp) : square (ap02 (elim Pb Pm Pe) merid_pt) Pe (elim_merid Pe pt) idp := !elim_incl2 end end red_susp attribute red_susp.base [constructor] attribute /-red_susp.rec-/ red_susp.elim [unfold 6] [recursor 6] --attribute red_susp.elim_type [unfold 9] attribute /-red_susp.rec_on-/ red_susp.elim_on [unfold 3] --attribute red_susp.elim_type_on [unfold 6]