/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Declaration of the n-spheres -/ import .susp types.trunc open eq nat susp bool is_trunc unit pointed /- We can define spheres with the following possible indices: - trunc_index (defining S^-2 = S^-1 = empty) - nat (forgetting that S^-1 = empty) - nat, but counting wrong (S^0 = empty, S^1 = bool, ...) - some new type "integers >= -1" We choose the last option here. -/ /- Sphere levels -/ inductive sphere_index : Type₀ := | minus_one : sphere_index | succ : sphere_index → sphere_index namespace trunc_index definition sub_one [reducible] (n : sphere_index) : trunc_index := sphere_index.rec_on n -2 (λ n k, k.+1) postfix `.-1`:(max+1) := sub_one end trunc_index namespace sphere_index /- notation for sphere_index is -1, 0, 1, ... from 0 and up this comes from a coercion from num to sphere_index (via nat) -/ postfix `.+1`:(max+1) := sphere_index.succ postfix `.+2`:(max+1) := λ(n : sphere_index), (n .+1 .+1) notation `-1` := minus_one export [coercions] nat notation `ℕ₋₁` := sphere_index definition add (n m : sphere_index) : sphere_index := sphere_index.rec_on m n (λ k l, l .+1) definition leq (n m : sphere_index) : Type₀ := sphere_index.rec_on n (λm, unit) (λ n p m, sphere_index.rec_on m (λ p, empty) (λ m q p, p m) p) m infix `+1+`:65 := sphere_index.add notation x <= y := sphere_index.leq x y notation x ≤ y := sphere_index.leq x y definition succ_le_succ {n m : sphere_index} (H : n ≤ m) : n.+1 ≤ m.+1 := H definition le_of_succ_le_succ {n m : sphere_index} (H : n.+1 ≤ m.+1) : n ≤ m := H definition minus_two_le (n : sphere_index) : -1 ≤ n := star definition empty_of_succ_le_minus_two {n : sphere_index} (H : n .+1 ≤ -1) : empty := H definition of_nat [coercion] [reducible] (n : nat) : sphere_index := (nat.rec_on n -1 (λ n k, k.+1)).+1 definition trunc_index_of_sphere_index [coercion] [reducible] (n : sphere_index) : trunc_index := (sphere_index.rec_on n -2 (λ n k, k.+1)).+1 definition sub_one [reducible] (n : ℕ) : sphere_index := nat.rec_on n -1 (λ n k, k.+1) postfix `.-1`:(max+1) := sub_one open trunc_index definition sub_two_eq_sub_one_sub_one (n : ℕ) : n.-2 = n.-1.-1 := nat.rec_on n idp (λn p, ap trunc_index.succ p) end sphere_index open sphere_index equiv definition sphere : sphere_index → Type₀ | -1 := empty | n.+1 := susp (sphere n) namespace sphere definition base {n : ℕ} : sphere n := north definition pointed_sphere [instance] [constructor] (n : ℕ) : pointed (sphere n) := pointed.mk base definition Sphere [constructor] (n : ℕ) : Pointed := pointed.mk' (sphere n) namespace ops abbreviation S := sphere notation `S.`:max := Sphere end ops open sphere.ops definition equator (n : ℕ) : map₊ (S. n) (Ω (S. (succ n))) := pmap.mk (λa, merid a ⬝ (merid base)⁻¹) !con.right_inv definition surf {n : ℕ} : Ω[n] S. n := nat.rec_on n (by esimp [Iterated_loop_space]; exact base) (by intro n s;exact apn n (equator n) s) definition bool_of_sphere : S 0 → bool := susp.rec ff tt (λx, empty.elim x) definition sphere_of_bool : bool → S 0 | ff := north | tt := south definition sphere_equiv_bool : S 0 ≃ bool := equiv.MK bool_of_sphere sphere_of_bool (λb, match b with | tt := idp | ff := idp end) (λx, susp.rec_on x idp idp (empty.rec _)) definition sphere_eq_bool : S 0 = bool := ua sphere_equiv_bool definition sphere_eq_bool_pointed : S. 0 = Bool := Pointed_eq sphere_equiv_bool idp definition pmap_sphere (A : Pointed) (n : ℕ) : map₊ (S. n) A ≃ Ω[n] A := begin revert A, induction n with n IH, { intro A, rewrite [sphere_eq_bool_pointed], apply pmap_bool_equiv}, { intro A, transitivity _, apply susp_adjoint_loop (S. n) A, apply IH} end -- can we prove this in such a way that the function from left to right is apn _ surf? protected definition elim {n : ℕ} {P : Pointed} (p : Ω[n] P) : map₊ (S. n) P := to_inv !pmap_sphere p -- definition elim_surf {n : ℕ} {P : Pointed} (p : Ω[n] P) : apn n (sphere.elim p) surf = p := -- begin -- induction n with n IH, -- { esimp [apn,surf,sphere.elim,pmap_sphere], apply sorry}, -- { apply sorry} -- end end sphere open sphere sphere.ops structure weakly_constant [class] {A B : Type} (f : A → B) := --move (is_weakly_constant : Πa a', f a = f a') abbreviation wconst := @weakly_constant.is_weakly_constant namespace is_trunc open trunc_index variables {n : ℕ} {A : Type} definition is_trunc_of_pmap_sphere_constant (H : Π(a : A) (f : map₊ (S. n) (pointed.Mk a)) (x : S n), f x = f base) : is_trunc (n.-2.+1) A := begin apply iff.elim_right !is_trunc_iff_is_contr_loop, intro a, apply is_trunc_equiv_closed, apply pmap_sphere, fapply is_contr.mk, { exact pmap.mk (λx, a) idp}, { intro f, fapply pmap_eq, { intro x, esimp, refine !respect_pt⁻¹ ⬝ (!H ⬝ !H⁻¹)}, { rewrite [▸*,con.right_inv,▸*,con.left_inv]}} end definition is_trunc_iff_map_sphere_constant (H : Π(f : S n → A) (x : S n), f x = f base) : is_trunc (n.-2.+1) A := begin apply is_trunc_of_pmap_sphere_constant, intros, cases f with f p, esimp at *, apply H end definition pmap_sphere_constant_of_is_trunc' [H : is_trunc (n.-2.+1) A] (a : A) (f : map₊ (S. n) (pointed.Mk a)) (x : S n) : f x = f base := begin let H' := iff.elim_left (is_trunc_iff_is_contr_loop n A) H a, let H'' := @is_trunc_equiv_closed_rev _ _ _ !pmap_sphere H', assert p : (f = pmap.mk (λx, f base) (respect_pt f)), apply is_hprop.elim, exact ap10 (ap pmap.map p) x end definition pmap_sphere_constant_of_is_trunc [H : is_trunc (n.-2.+1) A] (a : A) (f : map₊ (S. n) (pointed.Mk a)) (x y : S n) : f x = f y := let H := pmap_sphere_constant_of_is_trunc' a f in !H ⬝ !H⁻¹ definition map_sphere_constant_of_is_trunc [H : is_trunc (n.-2.+1) A] (f : S n → A) (x y : S n) : f x = f y := pmap_sphere_constant_of_is_trunc (f base) (pmap.mk f idp) x y definition map_sphere_constant_of_is_trunc_self [H : is_trunc (n.-2.+1) A] (f : S n → A) (x : S n) : map_sphere_constant_of_is_trunc f x x = idp := !con.right_inv end is_trunc