/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Declaration of the torus -/ import hit.two_quotient open two_quotient eq bool unit relation namespace torus definition torus_R (x y : unit) := bool local infix `⬝r`:75 := @e_closure.trans unit torus_R star star star local postfix `⁻¹ʳ`:(max+10) := @e_closure.symm unit torus_R star star local notation `[`:max a `]`:0 := @e_closure.of_rel unit torus_R star star a inductive torus_Q : Π⦃x y : unit⦄, e_closure torus_R x y → e_closure torus_R x y → Type := | Qmk : torus_Q ([ff] ⬝r [tt]) ([tt] ⬝r [ff]) definition torus := two_quotient torus_R torus_Q definition base : torus := incl0 _ _ star definition loop1 : base = base := incl1 _ _ ff definition loop2 : base = base := incl1 _ _ tt definition surf : loop1 ⬝ loop2 = loop2 ⬝ loop1 := incl2 _ _ torus_Q.Qmk -- protected definition rec {P : torus → Type} (Pb : P base) (Pl1 : Pb =[loop1] Pb) -- (Pl2 : Pb =[loop2] Pb) (Pf : squareover P fill Pl1 Pl1 Pl2 Pl2) -- (x : torus) : P x := -- sorry -- example {P : torus → Type} (Pb : P base) (Pl1 : Pb =[loop1] Pb) (Pl2 : Pb =[loop2] Pb) -- (Pf : squareover P fill Pl1 Pl1 Pl2 Pl2) : torus.rec Pb Pl1 Pl2 Pf base = Pb := idp -- definition rec_loop1 {P : torus → Type} (Pb : P base) (Pl1 : Pb =[loop1] Pb) -- (Pl2 : Pb =[loop2] Pb) (Pf : squareover P fill Pl1 Pl1 Pl2 Pl2) -- : apdo (torus.rec Pb Pl1 Pl2 Pf) loop1 = Pl1 := -- sorry -- definition rec_loop2 {P : torus → Type} (Pb : P base) (Pl1 : Pb =[loop1] Pb) -- (Pl2 : Pb =[loop2] Pb) (Pf : squareover P fill Pl1 Pl1 Pl2 Pl2) -- : apdo (torus.rec Pb Pl1 Pl2 Pf) loop2 = Pl2 := -- sorry -- definition rec_surf {P : torus → Type} (Pb : P base) (Pl1 : Pb =[loop1] Pb) -- (Pl2 : Pb =[loop2] Pb) (Pf : squareover P fill Pl1 Pl1 Pl2 Pl2) -- : cubeover P rfl1 (apds (torus.rec Pb Pl1 Pl2 Pf) fill) Pf -- (vdeg_squareover !rec_loop2) (vdeg_squareover !rec_loop2) -- (vdeg_squareover !rec_loop1) (vdeg_squareover !rec_loop1) := -- sorry protected definition elim {P : Type} (Pb : P) (Pl1 : Pb = Pb) (Pl2 : Pb = Pb) (Ps : Pl1 ⬝ Pl2 = Pl2 ⬝ Pl1) (x : torus) : P := begin induction x, { exact Pb}, { induction s, { exact Pl1}, { exact Pl2}}, { induction q, exact Ps}, end protected definition elim_on [reducible] {P : Type} (x : torus) (Pb : P) (Pl1 : Pb = Pb) (Pl2 : Pb = Pb) (Ps : Pl1 ⬝ Pl2 = Pl2 ⬝ Pl1) : P := torus.elim Pb Pl1 Pl2 Ps x definition elim_loop1 {P : Type} (Pb : P) (Pl1 : Pb = Pb) (Pl2 : Pb = Pb) (Ps : Pl1 ⬝ Pl2 = Pl2 ⬝ Pl1) : ap (torus.elim Pb Pl1 Pl2 Ps) loop1 = Pl1 := !elim_incl1 definition elim_loop2 {P : Type} (Pb : P) (Pl1 : Pb = Pb) (Pl2 : Pb = Pb) (Ps : Pl1 ⬝ Pl2 = Pl2 ⬝ Pl1) : ap (torus.elim Pb Pl1 Pl2 Ps) loop2 = Pl2 := !elim_incl1 theorem elim_surf {P : Type} (Pb : P) (Pl1 : Pb = Pb) (Pl2 : Pb = Pb) (Ps : Pl1 ⬝ Pl2 = Pl2 ⬝ Pl1) : square (ap02 (torus.elim Pb Pl1 Pl2 Ps) surf) Ps (!ap_con ⬝ (!elim_loop1 ◾ !elim_loop2)) (!ap_con ⬝ (!elim_loop2 ◾ !elim_loop1)) := !elim_incl2 end torus attribute torus.base [constructor] attribute /-torus.rec-/ torus.elim [unfold 6] [recursor 6] --attribute torus.elim_type [unfold 9] attribute /-torus.rec_on-/ torus.elim_on [unfold 2] --attribute torus.elim_type_on [unfold 6]