/- Copyright (c) 2015 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad Normed spaces. -/ import algebra.module .metric_space open real nat classical noncomputable theory structure has_norm [class] (M : Type) : Type := (norm : M → ℝ) namespace analysis definition norm {M : Type} [has_normM : has_norm M] (v : M) : ℝ := has_norm.norm v notation `∥`v`∥` := norm v end analysis /- real vector spaces -/ -- where is the right place to put this? structure real_vector_space [class] (V : Type) extends vector_space ℝ V section variables {V : Type} [real_vector_space V] -- these specializations help the elaborator when it is hard to infer the ring, e.g. with numerals proposition smul_left_distrib_real (a : ℝ) (u v : V) : a • (u + v) = a • u + a • v := smul_left_distrib a u v proposition smul_right_distrib_real (a b : ℝ) (u : V) : (a + b) • u = a • u + b • u := smul_right_distrib a b u proposition mul_smul_real (a : ℝ) (b : ℝ) (u : V) : (a * b) • u = a • (b • u) := mul_smul a b u proposition one_smul_real (u : V) : (1 : ℝ) • u = u := one_smul u proposition zero_smul_real (u : V) : (0 : ℝ) • u = 0 := zero_smul u proposition smul_zero_real (a : ℝ) : a • (0 : V) = 0 := smul_zero a proposition neg_smul_real (a : ℝ) (u : V) : (-a) • u = - (a • u) := neg_smul a u proposition neg_one_smul_real (u : V) : -(1 : ℝ) • u = -u := neg_one_smul u proposition smul_neg_real (a : ℝ) (u : V) : a • (-u) = -(a • u) := smul_neg a u end /- real normed vector spaces -/ structure normed_vector_space [class] (V : Type) extends real_vector_space V, has_norm V := (norm_zero : norm zero = 0) (eq_zero_of_norm_eq_zero : ∀ u : V, norm u = 0 → u = zero) (norm_triangle : ∀ u v, norm (add u v) ≤ norm u + norm v) (norm_smul : ∀ (a : ℝ) (v : V), norm (smul a v) = abs a * norm v) namespace analysis variable {V : Type} variable [normed_vector_space V] proposition norm_zero : ∥ (0 : V) ∥ = 0 := !normed_vector_space.norm_zero proposition eq_zero_of_norm_eq_zero {u : V} (H : ∥ u ∥ = 0) : u = 0 := !normed_vector_space.eq_zero_of_norm_eq_zero H proposition norm_triangle (u v : V) : ∥ u + v ∥ ≤ ∥ u ∥ + ∥ v ∥ := !normed_vector_space.norm_triangle proposition norm_smul (a : ℝ) (v : V) : ∥ a • v ∥ = abs a * ∥ v ∥ := !normed_vector_space.norm_smul proposition norm_neg (v : V) : ∥ -v ∥ = ∥ v ∥ := have abs (1 : ℝ) = 1, from abs_of_nonneg zero_le_one, by rewrite [-@neg_one_smul ℝ V, norm_smul, abs_neg, this, one_mul] proposition norm_sub (u v : V) : ∥u - v∥ = ∥v - u∥ := by rewrite [-norm_neg, neg_sub] end analysis section open analysis variable {V : Type} variable [normed_vector_space V] private definition nvs_dist [reducible] (u v : V) := ∥ u - v ∥ private lemma nvs_dist_self (u : V) : nvs_dist u u = 0 := by rewrite [↑nvs_dist, sub_self, norm_zero] private lemma eq_of_nvs_dist_eq_zero (u v : V) (H : nvs_dist u v = 0) : u = v := have u - v = 0, from eq_zero_of_norm_eq_zero H, eq_of_sub_eq_zero this private lemma nvs_dist_triangle (u v w : V) : nvs_dist u w ≤ nvs_dist u v + nvs_dist v w := calc nvs_dist u w = ∥ (u - v) + (v - w) ∥ : by rewrite [↑nvs_dist, *sub_eq_add_neg, add.assoc, neg_add_cancel_left] ... ≤ ∥ u - v ∥ + ∥ v - w ∥ : norm_triangle private lemma nvs_dist_comm (u v : V) : nvs_dist u v = nvs_dist v u := by rewrite [↑nvs_dist, -norm_neg, neg_sub] definition normed_vector_space_to_metric_space [trans_instance] (V : Type) [nvsV : normed_vector_space V] : metric_space V := ⦃ metric_space, dist := nvs_dist, dist_self := nvs_dist_self, eq_of_dist_eq_zero := eq_of_nvs_dist_eq_zero, dist_comm := nvs_dist_comm, dist_triangle := nvs_dist_triangle ⦄ open nat proposition converges_to_seq_norm_elim {X : ℕ → V} {x : V} (H : X ⟶ x in ℕ) : ∀ {ε : ℝ}, ε > 0 → ∃ N₁ : ℕ, ∀ {n : ℕ}, n ≥ N₁ → ∥ X n - x ∥ < ε := H proposition dist_eq_norm_sub (u v : V) : dist u v = ∥ u - v ∥ := rfl proposition norm_eq_dist_zero (u : V) : ∥ u ∥ = dist u 0 := by rewrite [dist_eq_norm_sub, sub_zero] proposition norm_nonneg (u : V) : ∥ u ∥ ≥ 0 := by rewrite norm_eq_dist_zero; apply !dist_nonneg end structure banach_space [class] (V : Type) extends nvsV : normed_vector_space V := (complete : ∀ X, @analysis.cauchy V (@normed_vector_space_to_metric_space V nvsV) X → @analysis.converges_seq V (@normed_vector_space_to_metric_space V nvsV) X) definition banach_space_to_metric_space [trans_instance] (V : Type) [bsV : banach_space V] : complete_metric_space V := ⦃ complete_metric_space, normed_vector_space_to_metric_space V, complete := banach_space.complete ⦄ namespace analysis variable {V : Type} variable [normed_vector_space V] variables {X Y : ℕ → V} variables {x y : V} proposition add_converges_to_seq (HX : X ⟶ x in ℕ) (HY : Y ⟶ y in ℕ) : (λ n, X n + Y n) ⟶ x + y in ℕ := take ε : ℝ, suppose ε > 0, have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos, obtain (N₁ : ℕ) (HN₁ : ∀ {n}, n ≥ N₁ → ∥ X n - x ∥ < ε / 2), from converges_to_seq_norm_elim HX e2pos, obtain (N₂ : ℕ) (HN₂ : ∀ {n}, n ≥ N₂ → ∥ Y n - y ∥ < ε / 2), from converges_to_seq_norm_elim HY e2pos, let N := max N₁ N₂ in exists.intro N (take n, suppose n ≥ N, have ngtN₁ : n ≥ N₁, from nat.le_trans !le_max_left `n ≥ N`, have ngtN₂ : n ≥ N₂, from nat.le_trans !le_max_right `n ≥ N`, show ∥ (X n + Y n) - (x + y) ∥ < ε, from calc ∥ (X n + Y n) - (x + y) ∥ = ∥ (X n - x) + (Y n - y) ∥ : by rewrite [sub_add_eq_sub_sub, *sub_eq_add_neg, *add.assoc, add.left_comm (-x)] ... ≤ ∥ X n - x ∥ + ∥ Y n - y ∥ : norm_triangle ... < ε / 2 + ε / 2 : add_lt_add (HN₁ ngtN₁) (HN₂ ngtN₂) ... = ε : add_halves) private lemma smul_converges_to_seq_aux {c : ℝ} (cnz : c ≠ 0) (HX : X ⟶ x in ℕ) : (λ n, c • X n) ⟶ c • x in ℕ := take ε : ℝ, suppose ε > 0, have abscpos : abs c > 0, from abs_pos_of_ne_zero cnz, have epos : ε / abs c > 0, from div_pos_of_pos_of_pos `ε > 0` abscpos, obtain N (HN : ∀ {n}, n ≥ N → norm (X n - x) < ε / abs c), from converges_to_seq_norm_elim HX epos, exists.intro N (take n, suppose n ≥ N, have H : norm (X n - x) < ε / abs c, from HN this, show norm (c • X n - c • x) < ε, from calc norm (c • X n - c • x) = abs c * norm (X n - x) : by rewrite [-smul_sub_left_distrib, norm_smul] ... < abs c * (ε / abs c) : mul_lt_mul_of_pos_left H abscpos ... = ε : mul_div_cancel' (ne_of_gt abscpos)) proposition smul_converges_to_seq (c : ℝ) (HX : X ⟶ x in ℕ) : (λ n, c • X n) ⟶ c • x in ℕ := by_cases (assume cz : c = 0, have (λ n, c • X n) = (λ n, 0), from funext (take x, by rewrite [cz, zero_smul]), begin rewrite [this, cz, zero_smul], apply converges_to_seq_constant end) (suppose c ≠ 0, smul_converges_to_seq_aux this HX) proposition neg_converges_to_seq (HX : X ⟶ x in ℕ) : (λ n, - X n) ⟶ - x in ℕ := take ε, suppose ε > 0, obtain N (HN : ∀ {n}, n ≥ N → norm (X n - x) < ε), from converges_to_seq_norm_elim HX this, exists.intro N (take n, suppose n ≥ N, show norm (- X n - (- x)) < ε, by rewrite [-neg_neg_sub_neg, *neg_neg, norm_neg]; exact HN `n ≥ N`) proposition neg_converges_to_seq_iff : ((λ n, - X n) ⟶ - x in ℕ) ↔ (X ⟶ x in ℕ) := have aux : X = λ n, (- (- X n)), from funext (take n, by rewrite neg_neg), iff.intro (assume H : (λ n, -X n)⟶ -x in ℕ, show X ⟶ x in ℕ, by rewrite [aux, -neg_neg x]; exact neg_converges_to_seq H) neg_converges_to_seq proposition norm_converges_to_seq_zero (HX : X ⟶ 0 in ℕ) : (λ n, norm (X n)) ⟶ 0 in ℕ := take ε, suppose ε > 0, obtain N (HN : ∀ n, n ≥ N → norm (X n - 0) < ε), from HX `ε > 0`, exists.intro N (take n, assume Hn : n ≥ N, have norm (X n) < ε, begin rewrite -(sub_zero (X n)), apply HN n Hn end, show abs (norm (X n) - 0) < ε, by rewrite [sub_zero, abs_of_nonneg !norm_nonneg]; apply this) proposition converges_to_seq_zero_of_norm_converges_to_seq_zero (HX : (λ n, norm (X n)) ⟶ 0 in ℕ) : X ⟶ 0 in ℕ := take ε, suppose ε > 0, obtain N (HN : ∀ n, n ≥ N → abs (norm (X n) - 0) < ε), from HX `ε > 0`, exists.intro (N : ℕ) (take n : ℕ, assume Hn : n ≥ N, have HN' : abs (norm (X n) - 0) < ε, from HN n Hn, have norm (X n) < ε, by rewrite [sub_zero at HN', abs_of_nonneg !norm_nonneg at HN']; apply HN', show norm (X n - 0) < ε, by rewrite sub_zero; apply this) proposition norm_converges_to_seq_zero_iff (X : ℕ → V) : ((λ n, norm (X n)) ⟶ 0 in ℕ) ↔ (X ⟶ 0 in ℕ) := iff.intro converges_to_seq_zero_of_norm_converges_to_seq_zero norm_converges_to_seq_zero end analysis